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1. Which of the operators A; defined in the following are linear operators? Which of these

are hermitian? All the functions )(x) are well behaved functions vanishing at +oc.

(a) Ap(z) = ()2

(b) Ay(z) = 2
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—(c) Az¥(z) = [ ¢ (2) da ~ \? . '\) - Ty
d) Ag(z) = 1/ (x) ‘P\
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2. (a) If A and B are Hermitian and [A, B] = AB — BA = iC, prove that C' is Hermitian
(b) An operator is said to be anti-Hermitian if Ot = —O. Prove that [A, B] is anti-

Hermitian.
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3. * Prove that if K is a Hermitian operator, exp (i]\') is an unitary operator, and if U is

an Unitary operator, then there is an operator K such that U= exp (i I\) and this K is

Hermitian.
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4. If A and B are operators, prove
(a) that (1‘)T =A
(b) that (AB)t = Bt A

(c) that A + Af i (1 - U) and that AA' are Hermitian operators.
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5. An operator is given by

G= mf—) + Bz
ox

where B is a constant. Find the eigen function ¢(z). If this eigen function is subjected to

a boundary condition ¢(a) = ¢(—a) find out the eigen values.
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7. * Consider a large number (N) of identical experimental set-ups. In each of these, a single

particle is described by a wave function ®(z) = Aexp(—2%/b?) at t = 0, where A is
i 5

the normalization constant and b is another constant with the dimension of length. If a

measurement of the position of the particle is carried out at time ¢ = () in all these set-ups,
it is found that in 100 of these, the particle is found within an infinitesimal interval of

z = 2b to 2b + dz. Find out, in how many of the measurements, the particle would have

been found in the infinitesimal interval of z = b to b + dz.
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8. * An observable A is represented by the operator A. Two of its normalized eigen functions \'\ \ \ ,_>\,\ a o) F dbn
. . e . 5 (o]

are given as @ (z) and ®,(x), corresponding to distinct eigenvalues a; and a,, respectively. Q, \ l"\)) '\-\u. ’P vleso |
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Another observable B is represented by an operator B. Two normalized eigen functions of
this operator are given as u; () and us(z) with distinct eigenvalues b; and bs, respectively.
The eigen functions ®,(z) and ®5(z) are related to u,(z) and us(z) as, @1 = D(3u; +4us);

&y = F(4uy — Puy) At time t = 0, a particle is in a state given by %‘I’l + %(I)z = k\’
= - v —307_)
AG A
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(a) Find the values of D, F and P.
—

(b) If a measurement of A is carried out at t = 0, what are the possible results and what

are their probabilities ? N \ —_
: : w (w) =
(c) Assume that the measurement of A mentioned above yielded a value al. If a measure- f‘\ \
ment of B is carried out immediately after this, what would be the possible outcomes and |
what would be their probabilities ? *,- {_ 3_\\0 "\3
(d) If instead of following the above path, a measurement of B was carried out initially at -\ S e \' eWn an
t = 0, what would be the possible outcomes and what would be their probabilities ? ® \&‘V\ __.3/‘

(e) Assume that after performing the measurements described in (c), the outcome was

bs. What would be the possible outcomes, if A were measured immediately after this and

what would be the probabilities ?
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