11 January 2022 15:28 Li Trailer of MA106

Adjoint of an operator
$$\rightarrow$$
 $6)f = 9$

$$\left(\frac{2}{2}\right)_{\phi} = \frac{2}{2}$$

Adjoint of an open.

$$\langle \hat{A}^{q_1,q_2} \rangle = \langle (\hat{A}^{q_1})^* q_2 \rangle$$

$$\forall \hat{A}^{q_1,q_2} \rangle = \langle (\hat{A}^{q_1})^* q_2 \rangle$$

$$\hat{B} = (\hat{A})^{\dagger}$$

roved that
this knew product can be expressed in this form for an operator B

For a hermitian operator
$$\hat{\beta} = \hat{A}$$
 or $(\hat{A}^* = \hat{A})$

$$\hat{\beta} = \hat{A}$$
 or $(\hat{A}^* = \hat{A})$

- 1. Which of the operators A_i defined in the following are linear operators? Which of these are hermitian? All the functions $\psi(x)$ are well behaved functions vanishing at $\pm\infty$.
 - (a) $\hat{A}_1 \psi(x) = \psi(x)^2$
 - (b) $\hat{A}_2\psi(x) = \frac{\partial\psi(x)}{\partial x}$
- $(c) \hat{A}_3 \psi(x) = \int_a^x \psi(x') dx'$
 - (d) $\hat{A}_4 \psi(x) = 1/\psi(x)$
 - (e) $\hat{A}_5 \psi(x) = -\psi(x+a)$
 - (f) $\hat{A}_6\psi(x) = \sin(\psi(x))$

(f)
$$\hat{A}_6 \psi(x) = \sin(\psi(x))$$

(g) $\hat{A}_7 \psi(x) = \frac{\partial^2 \psi(x)}{\partial x^2}$

$$\int (\hat{A}_1 \, \varphi_1)^* \, \varphi_2 = \int (\varphi_1^2)^* \, \varphi_2$$

$$\int \varphi_1^* \, \hat{A} \, \varphi_2 = \int \varphi_1^* \, \varphi_2^2$$
Non hermitian

(b)
$$\frac{1}{10000} = \frac{34}{30} + \frac{342}{30} = \frac{3}{30} + \frac{3}{30} = \frac{3}{30} =$$

$$(b) \frac{211600}{\left(\hat{A}_{2}\varphi_{1}\right)^{*}\varphi_{2}} = \left(\frac{3\varphi_{1}}{3^{N}}\right)^{*}\varphi_{2} \qquad (why!)$$

$$\langle A_{2}P, \Psi_{2} \rangle = \langle (A_{2}\Psi_{1})^{*} \Psi_{2$$

$$\begin{cases}
\varphi_1^* & \varphi_2 \varphi_2 = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_2}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_1}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_1}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_1}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_1}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_1}{\partial n} = \\
& = \int_{-\infty}^{\infty} \varphi_1^* \frac{\partial \varphi_1}{\partial n} = \\$$

(c)
$$\hat{A}_3 + (n) = \int_a^b \varphi(n) dn \longrightarrow linear$$

cimilar method as above

$$(d) \rightarrow Non linear
\rightarrow (\hat{A}_{4} + \hat{A}_{4})^{*} = \begin{cases} \frac{4^{2}}{\varphi_{1}^{*}} \\ \frac{\varphi_{1}^{*}}{\varphi_{2}} \end{cases}$$
Non hermitian

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(f) \hat{A}_{\epsilon} \Upsilon(n) = \sin \varphi(n) \longrightarrow Non linear$$

$$(g) \hat{A}_{7} \varphi(n) = \frac{3^{2} \varphi(n)}{3^{2} n^{2}} \rightarrow \text{Linear}$$

$$(g) \hat{A}_{7} \varphi(n) = \frac{3^{2} \varphi(n)}{3^{2} n^{2}} \rightarrow \text{Linear}$$

$$(g) \hat{A}_{7} \varphi(n) = \frac{3^{2} \varphi(n)}{3^{2} n^{2}} \rightarrow \text{Linear}$$

$$(\hat{A}_{1}, q_{1}, q_{2}) = \begin{cases} 3^{2}q_{1}^{*}, q_{2} = 3^{*}q_{1}^{*}, q_{2} =$$

- 2. (a) If \hat{A} and \hat{B} are Hermitian and $[\hat{A}, \hat{B}] = \hat{A}\hat{B} \hat{B}\hat{A} = i\hat{C}$, prove that \hat{C} is Hermitian
 - (b) An operator is said to be anti-Hermitian if $\hat{O}^{\dagger} = -\hat{O}$. Prove that $[\hat{A}, \hat{B}]$ is anti-

Hermitian.

Sol' (1) Given
$$\begin{cases}
(\hat{A} \varphi_1)^* \varphi_2 = \int \varphi_1^* (\hat{A} \psi_2) - 0
\end{cases}$$

$$\begin{cases}
(\hat{B} \varphi_1)^* \psi_2 = \int \varphi_1^* (\hat{B} \psi_2) - 0
\end{cases}$$

$$\begin{cases}
(\hat{B} \varphi_1)^* \psi_2 = \int \varphi_1^* (\hat{B} \psi_2) - 0
\end{cases}$$

$$\begin{cases} (\hat{g} \cdot q_1)^* \cdot q_2 = \int_{\mathbb{R}^n} \hat{g} \cdot \hat{g}$$

Hence 2 is a hermitian operator

3. * Prove that if \hat{K} is a Hermitian operator, $\exp(i\hat{K})$ is an unitary operator, and if \hat{U} is an Unitary operator, then there is an operator K such that $\hat{U} = \exp(i\hat{K})$, and this \hat{K} is

Hermitian.

Sel Vnitary Operator
$$\rightarrow$$
 preserves the inner product

i.e. $\langle \varphi_1, \varphi_2 \rangle = \alpha$
 $\langle \varphi_1, \varphi_2 \rangle = \alpha$

$$\int (\hat{O} \varphi_1)^* (\hat{O} \varphi_2) = \alpha$$

$$\int \varphi_1^* \hat{O}^* (\hat{O} \varphi_2) = \int \varphi_1^* (\hat{O}^* \hat{O}) \varphi_2 = \int \varphi_1^* \varphi_2$$

$$= \sum \hat{O}^* \hat{O} = \hat{I}$$

$$\Rightarrow \text{identity operator}$$

given
$$\hat{k} = \hat{K}^*$$

Consider $\hat{U}^* \cdot \hat{U} = (e^{i\hat{R}})^* \cdot (e^{i\hat{R}}) = e^{-i\hat{R}^*} \cdot e^{i\hat{R}} = e^{-i\hat{R}^*} \cdot e^{i\hat{R}} = e^{-i\hat{R}^*} \cdot e^{i\hat{R}} = e^{-i\hat{R}^*} \cdot e^{i\hat{R}^*} = e^{-i\hat{R}^*} = e^{-i\hat{R}^*} \cdot e^{i\hat{R}^*} = e^{-i\hat{R}^*} = e^{-i$

Hence O is unitary

(6) Stert with an operator
$$\hat{P}$$
 & use $e^{i\hat{p}} = \hat{T} + i\hat{p} + (i\hat{p}) + ---$

- 4. If \hat{A} and \hat{B} are operators, prove
 - (a) that $(\hat{A}^{\dagger})^{\dagger} = \hat{A}$
 - (b) that $(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$
 - (c) that $\hat{A} + \hat{A}^{\dagger}$, $i(\hat{A} \hat{A}^{\dagger})$, and that $\hat{A}\hat{A}^{\dagger}$ are Hermitian operators.

(c) that
$$\hat{A} + \hat{A}^{\dagger}$$
, and that $\hat{A}\hat{A}^{\dagger}$ are Hermitian operators.

Soin (a)

Let $\hat{A}^{*} = \hat{C}$

Soin (a)

Let $\hat{A}^{*} = \hat{C}$

$$(\hat{C} + \hat{q}_{1})^{*} = \hat{Q}_{2} = \hat{Q}_{1}^{*} + \hat{C}_{2} = \hat{Q}_{1}^{*} + \hat{C}_{2} = \hat{Q}_{2}^{*} + \hat{C}_{1}^{*} + \hat{Q}_{2} = \hat{Q}_{2}^{*} + \hat{C}_{1}^{*} + \hat{Q}_{2}^{*} = \hat{Q}_{2}^{*} + \hat{C}_{1}^{*} + \hat{Q}_{2}^{*} = \hat{C}_{2}^{*} + \hat{C}_{1}^{*} + \hat{C}_{2}^{*} + \hat{C}_{1}^{*} + \hat{C}_{2}^{*} + \hat{$$

5. An operator is given by

$$\hat{G} = i\hbar \frac{\partial}{\partial x} + Bx$$

where B is a constant. Find the eigen function $\phi(x)$. If this eigen function is subjected to a boundary condition $\phi(a) = \phi(-a)$ find out the eigen values.

$$i \pi \frac{d \Upsilon(n)}{\varphi(n)} = (c-Bn) dn =>$$

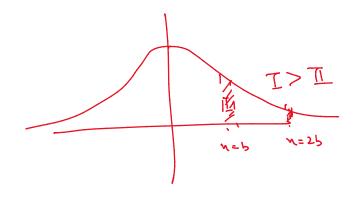
$$\frac{\partial n}{\partial r} = (c - \beta n) dn = \frac{\partial n^2}{\partial r}$$

$$\frac{\partial r}{\partial r} = \frac{\partial r}{\partial r} = \frac{\partial r}{\partial r} = \frac{\partial r}{\partial r}$$

$$\frac{\partial r}{\partial r} = \frac{\partial r}{\partial r} = \frac{\partial r}{\partial r} = \frac{\partial r}{\partial r}$$

$$\frac{\partial r}{\partial r} = \frac{\partial r}{\partial r}$$

7. * Consider a large number (N) of identical experimental set-ups. In each of these, a single particle is described by a wave function $\Phi(x) = A \exp(-x^2/b^2)$ at t = 0, where A is the normalization constant and b is another constant with the dimension of length. If a measurement of the position of the particle is carried out at time t=0 in all these set-ups, it is found that in 100 of these, the particle is found within an infinitesimal interval of x = 2b to 2b + dx. Find out, in how many of the measurements, the particle would have been found in the infinitesimal interval of x = b to b + dx.



$$Sol^{n}$$
 $dP_{1} = \Phi^{x}(2b) \cdot \Phi(2b) \cdot dn = A \cdot A^{x} e^{-4} \cdot e^{-4} \cdot dn = \frac{100}{N}$

$$dP_2 = \Phi^*(b), \Phi(b), dn = A.A^* e^{-1}, e^{-1}dn = \frac{100}{N} \frac{e^{-2}}{e^{-8}} = \frac{100}{N} e^{-6} = \frac{N^2}{N}$$

(Enplains the philosophy of OsM very nicely) 8. * An observable A is represented by the operator \hat{A} . Two of its normalized eigen functions are given as $\Phi_1(x)$ and $\Phi_2(x)$, corresponding to distinct eigenvalues a_1 and a_2 , respectively. Another observable B is represented by an operator \hat{B} . Two normalized eigen functions of this operator are given as $u_1(x)$ and $u_2(x)$ with distinct eigenvalues b_1 and b_2 , respectively. (Stern-Geralch Enperiment) The eigen functions $\Phi_1(x)$ and $\Phi_2(x)$ are related to $u_1(x)$ and $u_2(x)$ as, $\Phi_1 = D(3u_1 + 4u_2)$; $\Phi_2 = F(4u_1 - \underline{Pu_2})$ At time t = 0, a particle is in a state given by $\frac{2}{3}\Phi_1 + \frac{1}{3}\Phi_2$. \blacksquare = 1 (401-302) (a) Find the values of D, F and P. $\widehat{A} \quad \varphi_{i}(n) = \alpha_{i} \Phi_{i}(n)$ $0_{i}(n) \rightarrow eigen fundtions$ (b) If a measurement of A is carried out at t = 0, what are the possible results and what are their probabilities? (c) Assume that the measurement of A mentioned above yielded a value a1. If a measurement of B is carried out immediately after this, what would be the possible outcomes and what would be their probabilities? (d) If instead of following the above path, a measurement of B was carried out initially at t = 0, what would be the possible outcomes and what would be their probabilities? (e) Assume that after performing the measurements described in (c), the outcome was b_2 . What would be the possible outcomes, if A were measured immediately after this and B U, (m) = b, U,(m) what would be the probabilities? Sor (a) P, is normalised. => $\langle \phi_i, \phi_i \rangle = \int_{-\infty}^{\infty} \phi_i^*(n) \cdot \phi_i^*(n) \cdot dn = 1$ inner product $= \langle D(3U_1 + 4U_2), D(3U_1 + 4U_2) \rangle \Rightarrow ||D|^2(3U_1^* + 4U_2^*)(3U_1 + 4U_2) \cdot d_{\eta} = ||D|^2(3U_1 + 4U_2) \cdot d_{\eta} = ||D|^2(3$ $= > |D|^{2} \left(\int \frac{g u_{1}^{*} u + |(u_{2}^{*} u_{2} + |2(u_{1}^{*} u_{2} + u_{1} u_{3}^{*})}{du} \right)$ こし δο2 Φ2=1 (JU2 V2=1 (U, U, dn = 1 & (U2 U2 dn = 1 $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$ ligen functions corresponding to distinct eigen values of a Hermitian $|D|^2 \left(25\right) = 1$ operator are orthogonal $= 7 |b| = \frac{1}{5} \frac{\text{Assuming}}{\text{O + obs}} D = \frac{1}{5}$ $= \frac{1}{5}$ $= \frac{1}{5}$ -> Assuming F& P to be real $\langle \phi_2, \phi_2 \rangle = 1 = F^2 (4^2 + \rho^2)$ $\langle \phi_2, \phi_1 \rangle = 0 = \langle F(40, -P0_2), \frac{1}{5}(30, +40_2) \rangle = \int_{-\infty}^{\infty} F(40, +P0_2^*) \cdot \frac{1}{5}(30, +40_2) dn$ 12F _ YPF Assume $\hat{A} \rightarrow \text{spin in Z dir} \longrightarrow 0, \rightarrow \pm 5 \text{pin } \pm \frac{1}{2} \longrightarrow P=3$ $\hat{A} \rightarrow \text{spin in Z dir} \longrightarrow 0, \rightarrow \pm 5 \text{pin } \pm \frac{1}{2} \longrightarrow P=3$ $\hat{A} \rightarrow \text{spin in Z dir} \longrightarrow 0, \rightarrow \pm 5 \text{pin } \pm \frac{1}{2} \longrightarrow P=3$ (F=o is not)
possible B -> spin in n dir ->vz (6) $\frac{\Psi_{e}}{4} = \frac{2}{3} \frac{\Phi_{1}}{1} + \frac{1}{3} \frac{\Phi_{2}}{1}$ 4 < 0 $4 = \frac{2}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{1}{3}$ 4 > 0 $4 = \frac{2}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3} =$ 0 D2

Wavefunction collapse cithen into
$$\Phi_1$$
 or Ψ_2

$$(\text{with probability})$$

$$(\text{with probability})$$

$$(\text{with probability})$$

$$(\frac{(1/3)^2}{(2/3)^2 + (1/3)^2} = \frac{1}{5}$$

$$(\frac{(1/3)^2}{(2/3)^2 + (1/3)^2} = \frac{1}{5}$$

$$(\frac{(1/3)^2}{(1/3)^2 + (1/3)^2} = \frac{1}{5}$$

If measurement is carried out, value a, is obtained w.P. (4/5)

(c) Criven that value
$$a_1$$
 is obtained.

Wavefunction collapse into a_1

So new a_1 is obtained.

So new a_2 into a_1 cigenfunctions of a_2

Now a_1 is obtained.

(all apse into a_1 is obtained.

(d) We always try to enpress the particle wave function of particle in terms of eigenfunctions of operator that is being acted upon it. $\varphi_p = \frac{1}{3} \varphi_1 + \frac{1}{3} \varphi_2$ $\varphi_p = \frac{1}{3} \varphi_1 + \frac{1}{3} \varphi_2$

$$\varphi_{p} = \frac{3}{3} \left(\frac{1}{5} \left(\frac{34}{4} 4 \frac{4}{2} \right) \right) + \frac{1}{3} \left(\frac{1}{5} \left(\frac{4}{4} \frac{4}{4} \frac{3}{2} \right) \right) = \frac{10}{15} \frac{4}{15} \frac{5}{15} \frac{6}{2}$$

$$= \frac{2}{3} \frac{6}{15} \frac{1}{15} \frac{1}{15} \frac{1}{2} \frac{1}{2}$$

$$\beta \varphi_{p} = \beta \left(\frac{2}{3} + \frac{1}{3} u_{2}\right)$$

$$b_{1} \text{ obtained}$$

$$b_{2} \text{ obtained}$$

$$w_{1} p_{2} \frac{\left(1/3\right)^{2}}{\left(1/3\right)^{2} + \left(1/3\right)^{2}} = \frac{1}{5}$$

$$p_{0} \text{ ovt } c$$

b, obtained
W.P.
$$\frac{(2/3)^2}{(2/3)^2 + (1/3)^2} = \frac{4}{5}$$

by obtained

W.P.
$$\frac{(73)^2}{(2/3)^2} = \frac{4}{5}$$

W.P. $\frac{(13)}{(1/3)^2} = \frac{1}{5}$

Aitrouni

Part c

 $\frac{(2/3)^2 + (1/3)^2}{(2/3)^2 + (1/3)^2} = \frac{1}{5}$

$$\Phi_1 = \frac{3}{5} \cdot \sqrt{\frac{4}{5}} \cdot \frac{4}{5} \cdot \sqrt{\frac{4}{5}}$$

$$\phi_2 = \frac{4}{5} \sigma_1 - \frac{3}{5} \sigma_2$$