Tutorial 4 Solution

29 April 2022 12:34

1. * Consider a conducting sphere A which is initially uncharged. Another conducting sphere B is given a charge +Q, brought into contact with A and then moved far away. The charge on B is then increased to its original value +Q and again brought into contact with A. Show that if this process is repeated many times, the charge on A will tend to the limit $\frac{Qq}{Q-q}$, where q is the charge acquired by A after its first contact with B.

Sal

2. *A hemisphere of radius R has z=0 as its equatorial plane and lies entirely in the region $z \geq 0$. The hemisphere has a uniform volume charge density of ρ . Determine the field at the centre of the hemisphere.

3. * The potential takes the constant value ϕ_0 on the closed surface S which bounds a volume V. The total charge inside V is Q. There is no charge anywhere else. Show that the electrostatic energy contained in the space outside of S is $U_E(out) = \frac{Q\phi_0}{2}$

$$P=0 \rightarrow (no \text{ enternal})$$

(Sydc charges

Volume integral is overwhole volume surface integral would be over the surface at .

$$\forall . \overrightarrow{E} = \frac{3}{\epsilon_0}$$

Volume integral is over volume surface integral would be over

the surface 8.

$$\int_{A}^{\xi} \left(\left(A, A \right) \right) dz = \left(\left(A, d \right) \right)$$

Utotal - Uinside =
$$\frac{c_0}{2}$$
 [$\frac{c_0}{E}$, $\frac{1}{2}$] $\frac{c_0}{2}$ Uinside Utotal - Uinside

S is Divergence

 $U_{\text{outside}} = \frac{\xi_0 \phi_0}{2} \left(\left(\vec{E} \cdot d\vec{s} \right) \right)$

$$\begin{array}{c|c}
\hline
V_{\text{sutside}} & = & \underbrace{\varepsilon_{0} \varphi_{0} Q_{0} \cdot \frac{1}{\varepsilon_{0}}}_{2} = & \underbrace{Q_{0} \varphi_{0}}_{2}
\end{array}$$

(5)

Second Unique news Theorem.