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Thermal History of the Neutrinos

Evolution in ;he Sftandard Model
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Tracing the temperature of neutrinos relative to
photons

e Goal: To find the temperature ratio Ty / T after the e’e” scattering

e Use entropy conservation arguments to naively estimate the ratio

3 3
Sia; — Sfaf ; S ->entropy density

i -> epoch at which neutrinos decouple
f ->epoch after the annihilations
e ﬂ) p, P ->energy, pressure densities

s
T



Tracing the temperature of neutrinos relative to
photons

e Forarelativistic species p = P/3
e At early times, particle interactions were efficient enough to keep the

different species in local equilibrium. They then shared a common
temperature T, and the distribution functions take the BE or FD forms

i (131) E(p) e 7{; T*  (boson)
) 273 e(Ea—ta)/T — ¢ %f—STf (fermion)




Tracing the temperature of neutrinos relative to
photons
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Tracing the temperature of neutrinos relative to
photons

Lig; = Tvaf (Temp of neutrinos simply dilutes by scale factor after decoupling)

11
3
sia; =Sf(13¢- — Iy = 4 T
7T4 g, 4 4/3
— Ly T = S o

Assumption: The above analytlc calculation assumes the neutrinos instantaneously decouple
from the SM plasma at T = T. However the process of neutrino decoupling is a gradual process.



N_.: Effective Extra Relativistic Species

e \We can define a quantity N_.as

4

8 ( 11 )4/3 Prad — Py where p _ means total radiation

Negt = = density in the universe
7 Py /

e Inthe SM case radiation density is contributed by neutrinos and photons only. If the
assumption of instantaneous decoupling holds, then we can see that N _. = 3

e N_.serves as a convenient parameter to study the relativistic species in the early
universe in terms of photon energy density



Numerical Calculation of Neﬁ: Escudero's Code
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— Liouville equation

When interactions between a particle y and the rest of the plasma are efficient,
the distribution function of the y species is well described by equilibrium

distribution functions

Escudero [1] showed that the relevant thermodynamic quantities can be tracked
very accurately if we assume that the species follow their equilibrium distribution
at all times



Numerical Calculation of Neﬂ,: Escudero's Code

Multiplying the Liouville equation by g2 P and 82 P2E andintegrating

dn on a’3p

dt e 8t 27r3((0[f]
dp 5 P p.,
L 13H(p+ ) = /g2n3

Using chain rule, we can formulate these differential equations in terms of
Temperature T and chemical potential u



Numerical Calculation of Neﬁ: Escudero's Code
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In case where the chemical
potential u can be neglected,
the equations simplify further
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Neutrino decoupling in SM using Escudero's Code

the following three assumptions

=T, =T,

(il

=T

We now write down the differential equations corresponding to TY and T  using

All the species involved (e*,e, y,v) follow perfect equilibrium conditions

Neutrino Oscillations are neglected: 7y
The chemical potentials are neglected

/ d Pin 6pVe Spv

dT,  4Hpy+3H(pe+ Pe) H3HT, Gpe+ 25 + 25"
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FT QED Corrections




Neutrino decoupling in SM using Escudero’s Code
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Neutrino decoupling in SM using Escudero’s Code

Comparison

Comparison of Neff = 3.045 obtained using Escudero's Code with other sources

Source/ Method Nefr % change
Instantaneous Decoupling 3 1.5 %
Salas Pastor et al[2] (State of the Art) 3.046 0.03 %
Current Precision (Planck 2018) O (Negr) ~ 0.2 5-6 %
Future Precision (Simons Observatory and CMB -S4) | 6 (Ngg) ~ 0.05 1-2 %




From Theory to Observations: CMB Power Spectrum

Angular separation
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Temperature fluctuations in the CMB as measured by
the Planck satellite [3]

Planck 2018 Temperature Power Spectra [4]



Damping Tails

The damping tails in the region Il are affected significantly (as compared to the
other regions) by the amount of total radiation density before recombination.
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CMB -S4

e The current measurement is not precise enough to conclusively determine the
presence or absence of additional degrees of freedom

e CMB-S54l5] is the next-generation ground-based cosmic microwave
background experiment.
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Space based experiments
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CMB -S4 Forecasts for Nei,f

e With the improved sensitivity and more precise measurements at lower
angular scales, the CMB-S4 is predicted to reach ¢ (N_. ) ~ 0.02-0.03
e Fora hot thermalrelic
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BSM N_.: Dark Matter interacting with SM via massive
dark photons
Model Description [6]

e DM particle [] (complex scalar, Majorana fermion, and Dirac fermion) coupled to
a massive dark photon A kinetically mixed with SM photon

e Equivalent Neutrino ¢ (new inert, relativistic degrees of freedom)

e Model Parameters - miJ and AN (p&/pv) and mA/m(



Temperature Evolution Equations

Spv
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Results
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Above my ~ 20 MeV the predicted
value of N_. approaches the
standard cosmological value
because the DM freezes out well
before neutrino decoupling, and so
the DM annihilations heat the
electromagnetic and neutrino
sectors equally.

When my < 20 MeV, entropy is
injected into the electromagnetic
sector during and after the period of
neutrino decoupling (Tvd ~ 2 MeV). In
this case, N_; decreases relative to
the standard value because the
electromagnetic sector is
preferentially heated. A nonzero ANv
restores Neff to its measured value



Future Work

e Incorporating a DM model consisting of heavy sterile right-handed neutrinos

e Sophisticated DM models involving the role of chemical potential
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