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1. Neff in Standard Model

1.1 Thermal History of the Neutrinos
The primordial universe was a hot, dense soup of particles smashing into each other, forming new
particles. As the universe expanded and temperatures dropped down, the interaction rates of many
of these particles couldn’t keep up with the expansion rate (Hubble’s rate), and they dropped out of
equilibrium from the Standard Model (SM) plasma consisting of electrons, protons, positrons and
photons. Owing to the weak nature of neutrino interactions with the electrons, neutrinos dropped
out way early (T ∼ 1 MeV; t ∼ 1s) as compared to the photons (T ∼ 10−7 MeV; t ∼ 380,000 years),
which are coupled tightly by Electromagnetic Thomson Scatterings.

Figure 1.1: Credits: Loosing the Nobel Prize, Brian Keating

At early times, particle interactions were efficient enough to keep the different species in local
equilibrium. They then shared a common temperature T, and the distribution functions take their
maximum entropy Bose-Einstein (bosons) and Fermi-Dirac (fermions) forms. The energy density
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Figure 1.2: Tγ vs Tν in SM

of a species in such scenario is given by [1]

ρa = ga

∫ d3 p
2π3

E(p)
e(Ea−µa)/T −1

(1.1)

where ga are the internal degrees of freedom of a species and µa is the chemical potential,
which is usually small for photons and other species. So, we’ll neglect it for now in our calculations
but will revisit the significance of chemical potential in later chapters.

For a massless species E(p) = p, thus we obtain

ρa =

{
π2

15 T 4
a (boson)

7
8

π2

15 T 4
a (fermion)

(1.2)

We want to track the neutrino energy density, which can be expressed as

ρν = 3× 7
8

T 4
ν

T 4
γ

ργ (1.3)

where the factor of 3 is because of three neutrino flavours
The above equation tells us that the neutrino energy density can be tracked effectively if we

know how the Temperature of neutrinos vary as compared to the photons. From the time of Big
Bang till neutrinos decoupled, neutrinos and photons shared a common temperature as neutrinos
were coupled to the SM plasma. Shortly after neutrinos decoupled, electron-positron annihilations
pumped energy into the photons but neutrinos, being decoupled, already received almost none of
this energy.

A naive calculation of the photon temperature following the electron-positron annhiliations can
be done using the entropy conservation arguments which is true under the adiabatic evolution of
universe.

The entropy density of any species is defined as

s =
ρ +P

T
(1.4)

where P is the pressure of the species
For a relativistic species P = ρ/3
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The entropy density of a massive particle (m » T) is negligible as bth ρ and P are exponentially
suppressed. At the temperatures around neutrino decoupling massive species like electrons and
positrons are also relativistic (T » m). Thus the total entropy density before the annhiliations is

si = 3sν + sγ + se− + se+ (1.5)

si =
4
3

(
3×2× 7

8
π2

15
T 3

ν +2× π2

15
T 3

γ +4× 7
8

π2

15
T 3

γ

)
(Te− = Te+ = Tγ) (1.6)

Before annihilation, at a scale factor ai, the neutrinos are coupled with SM tightly and thus
Tν = Tγ = Ti

=⇒ si =
4π2

45
× 43

4
T 3

i (1.7)

After the annihilation, we are left with only photons and neutrinos at different temperatures

=⇒ s f =
4π2

45

(
6× 7

8
T 3

ν +2T 3
γ

)
(1.8)

Conserving the total entropy s(a)a3 before and after annhiliations we get

sia3
i = s f a3

f (1.9)

Once neutrinos are decoupled, their temperature simply scales as T ∝ a−1, as they are relativstic
particles

=⇒ Tiai = Tνa f (1.10)

=⇒ T 3
γ =

11
4

T 3
ν (1.11)

Substituting this back into 1.3, we get

ρν = 3× 7
8

(
4
11

)4/3

ργ (1.12)

Assumption: The above analytic calculation assumes the neutrinos instantaneously decouple
from the SM plasma at T = Ti ( =⇒ Tiai = Tνa f ). However the process of neutrino decoupling is
gradual process. Hence the above equation needs to be corrected by letting go of the instantaneous
decoupling assumption.

1.2 Neff definition in Standard Model
The above problem can be reformulated by defining a quantity

Neff =
8
7

(
11
4

)4/3
ρν

ργ

(1.13)

As we can see in the case of instantaneous decoupling, the above equation yields Neff = 3. Neff
is a measure of extra relativistic species in the Early Universe. In the next section, we’ll see how
we can numerically track the energy densities of neutrinos and photons to work out Neff
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1.3 Numerical Calculation: Escuedero’s Code
1.3.1 The Liouville Equation

The distribution function f determines the thermodynamics of any given species in the early
Universe. In a fully homogeneous and isotropic Universe, the time evolution of the distribution
function f is governed by the Liouville equation

∂ f
∂ t

−H p
∂ f
∂ p

= C [ f ] (1.14)

where p is the momentum, H is the Hubble rate, and C [ f ] is the collision term which depends
on the interactions of the given species.

Once the distribution function is determind the number density, energy and pressure density of
a species are given by

na = ga

∫ d3 p
2π3 fa (1.15)

ρa = ga

∫ d3 p
2π3 E(p) fa (1.16)

Pa = ga

∫ d3 p
2π3

p2

3E(p)
fa (1.17)

1.3.2 Approximations
The actual solution to the Liouville equation 1.14 strongly depends upon the processes that the
given species is undergoing in the early Universe. When interactions between a particle ψ and
the rest of the plasma are efficient, the distribution function of the ψ species is well described by
equilibrium distribution functions. Namely, fermions and bosons follow the usual Fermi-Dirac
(FD) and Bose-Einstein (BE) distribution functions.

fFD =
1

e(E−µ)/T −1
(1.18)

fBE =
1

e(E−µ)/T +1
(1.19)

If scattering/annihilation/decay processes are not fully efficient, the distribution function of a
given species may not exactly be described by a Fermi-Dirac or Bose-Einstein formula. However
Escudero[2] showed that the relevant thermodynamic quantities can be tracked very accurately if
we assume that the species follow their equilibrium distribution at all times. The advantage of
this approximation is that we can find simple differential equations for the time evolution of the
temperature and chemical potential that fully describe the thermodynamics of a given system.

1.3.3 Temperature and chemical potential evolution for a generic species

Multiplying 1.14 with g d3 p
2π3 and g d3 p

2π3 E and integrating gives

dn
dt

+3Hn =
δn
δ t

=
∫

g
d3 p
2π3 C [ f ] (1.20)

dρ

dt
+3H(ρ +P) =

δρ

δ t
=

∫
g

d3 p
2π3 C [ f ]E (1.21)

By trivial use of chain rule, we can obtain
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dn
dt

=
∂n
∂T

dT
dt

+
∂n
∂ µ

dµ

dt
(1.22)

dρ

dt
=

∂ρ

∂T
dT
dt

+
∂ρ

∂dµ

µ

dt
(1.23)

On rearranging terms we get,

dT
dt

=

(
dρ

dt
∂n
∂ µ

− dn
dt

∂ρ

∂ µ

)/(
∂n
∂ µ

∂ρ

∂T
− ∂n

∂T
∂ρ

∂ µ

)
(1.24)

dµ

dt
=

(
dn
dt

∂ρ

∂T
− dρ

dt
∂n
∂T

)/(
∂n
∂ µ

∂ρ

∂T
− ∂n

∂T
∂ρ

∂ µ

)
(1.25)

We can substitute the above equations in 1.20 and 1.21, expressing the numerator in terms of
Hubble’s Rate, number and energy density

dT
dt

=
1(

∂n
∂ µ

∂ρ

∂T − ∂n
∂T

∂ρ

∂ µ

) [
−3H

(
(ρ +P)

∂n
∂ µ

−n
∂ρ

∂ µ

)
+

∂n
∂ µ

δρ

δ t
− ∂ρ

∂ µ

δn
δ t

]
(1.26)

dµ

dt
=

−1(
∂n
∂ µ

∂ρ

∂T − ∂n
∂T

∂ρ

∂ µ

) [
−3H

(
(ρ +P)

∂n
∂T

−n
∂ρ

∂T

)
+

∂n
∂T

δρ

δ t
− ∂ρ

∂T
δn
δ t

]
(1.27)

These set of equations can be considerably simplified if chemical potentials are neglected. This
typically occurs as a result of some efficient interactions. In the Standard Model, for example,
efficient e+e− → γγ and e+e− → γγγ interactions allow one to set µe(t) = µγ(t) = 0. If dµ

dt = 0
then dn

dt =
dρ

dt
∂n
∂T /

∂ρ

∂T . This simplifies the 1.26 to

dT
dt

=
dρ

dt
/

∂ρ

∂T
(1.28)

=

[
−3H(ρ +P)+

δρ

δ t

]/
∂ρ

∂T
(1.29)

1.3.4 Putting it together: Neutrino decoupling in SM using Escudero’s Code
Using the above discussion we now write down the differential equations describing the time
evolution of the temperature of the electromagnetic plasma Tγ and the neutrino fluid Tν . We’ll first
summarise the approximatons used in writing these equations

• All the species invloved (e+,e−,γ,ν) follow perfect equilibrium conditions: This is the
most fundamental assumption which stems from the fact that the non-thermal corrections to
the equilibium distributions account for less that 1% of the total energy density of a species
[2].

• Neutrino Oscillations are neglected: The effect of neutrino oscillations on Neff is small
(∆NSM

eff = 0.0007) [3]. To approximately mimic the effect of neutrino oscillations the neutrino
fluid is described with a single temperature, Tν = Tνe = Tνµ

= Tντ
.

• The chemical potentials are neglected: The photon number is not conserved in the early
universe and the small baryon to photon ratio justifies setting µe = µγ = 0. The neutrino
interactions νν → e+e− → γγ are also highly efficient in the concerned temperature regime,
justifying µν = 0. However, it is explicitly checked that accounting for the neutrino chemical
potential doesn’t affect the results significantly.
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We are now all set to write the temperature evolution equations. We consider the SM plasma
and neutrinos separately. In the SM plasma e−,e+ are tightly coupled to the photons via efficient
annihilations and scatterings during neutrino decoupling and thus share a common temperature
Tγ = Te. Thus we can write a common temperature evolution equation for the whole SM plasma
using 1.29

dTγ

dt
=−

4Hργ +3H(ρe +Pe)− δρe
δ t

∂ργ

∂Tγ
+ ∂ρe

∂Tγ

(1.30)

where we’ve used that for photons P = ρ/3 and the contribution to δρ/δ t It comes only from
electrons due to weak interactions with the neutrino sector. One interesting thing to note here is that
the energy interchange b/w electrons and photons is so efficient that it doesn’t let the temperatures
of both sectors change and this is the reason why we can write a common evolution equation in the
first place.

In the standard model, the total energy interchange b/w electrons and neutrinos must sum up to
0 as these are the only particles present.

=⇒ δρe

δ t
+

δρνe

δ t
+2

δρνµ

δ t
= 0 (1.31)

where the factor of 2 is because of identical energy transfer rates in case of µ and τ neutrinos.
Substituing 1.31 into 1.30 we obtain

dTγ

dt
=−

4Hργ +3H(ρe +Pe)+
δρνe

δ t +2
δρνµ

δ t
∂ργ

∂Tγ
+ ∂ρe

∂Tγ

(1.32)

Finally a more accurate temperature evolution equation would also include the Linear Or-
der (LO) and Non-Linear Order (NLO) finite temperature QED corrections as well to the elec-
tromagnetic energy and pressure densities. These corrections are denoted as Pint and ρint =
−Pint +Tγ

dPint
dTγ

and their values have been taken from [4]. This gives us the final temperature
evolution equation for the photon plasma

dTγ

dt
=−

4Hργ +3H(ρe +Pe)+3HTγ
dPint
dTγ

+
δρνe

δ t +2
δρνµ

δ t
∂ργ

∂Tγ
+ ∂ρe

∂Tγ
+Tγ

d2Pint
dT 2

γ

(1.33)

Similary we can write an equation for the neutrino sector consisting of all the three neutrino
flavours

dTν

dt
=−

12Hρν − δρνe
δ t −2

δρνµ

δ t

3 ∂ρν

∂Tν

(1.34)

1.3.5 Results
We solve the above differential equations with an initial condition of Tγ = Tν = 10MeV . We also
explicity check our assumption that neutrino chemical potential can be neglected by taking that
into account. The difference b/w the is less than 0.02%. Hence our assumption is valid. In the
next section we compare these results with the state of the art calculation and current and future
experimental precision.
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Figure 1.3: Results obtained using Escudero’s Code

1.3.6 Comparison

Table 1.1: Comparison of Neff = 3.045 obtained using Escudero’s Code with other sources

Source/ Method Neff % change
Instantaneous Decoupling 3 1.5 %

Salas Pastor et al[3] (State of the Art) 3.046 0.03 %
Current Precision (Planck 2018) σ (Neff) ∼ 0.2 5-6 %

Future Precision (Simons Observatory and CMB -S4) σ (Neff) ∼ 0.05 1-2 %





2. Neff Measurements from CMB

In the last chapter we studied how we can theoretically calculate the value in the Standard Model
case. But now the question arises, how do we verify this calculation? The answer to this question
(like most other questions regarding the Primordial Universe) is given by the observations of Cosmic
Microwave Background. CMB is an important source of data on the primordial universe. In this
chapter, we’ll first discuss how can we obtain the value burried inside the CMB measurements
and later discuss how the upcoming advances in technology related to CMB measurements will
significantly improve precision of the value.

2.1 CMB Power Spectrum: A qualitative description
The remarkable image in ?? is a snapshot of the universe when it was only 380,000 years old.
It displays fluctuations in the intensity of CMB photons, which are a reflection of the density
variations at the time of photon decoupling.

Figure 2.1: Temperature fluctuations in the cosmic microwave background as measured by the
Planck satellite [5]

The CMB temperature fluctuations are analyzed statistically by measuring the correlations
between hot and cold spots as a function of their angular separation. The result is the angular
power spectrum shown in 2.2. The figure also shows a fit of the theoretical prediction for the CMB
spectrum to the data. The agreement between the theory and the data is remarkable. A higher l
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value represents a higher multipole and a lower angular scale.

Figure 2.2: Planck 2018 Temperature Power Spectra [6]

Qualitatively, we can separate the CMB spectrum in three different regimes as shown in the
figure above

• Region I: Correlations at large angles are caused by fluctuations that had not yet entered the
horizon at the time of recombination. These fluctuations did not change before the photons
were decoupled, thus providing a direct insight into the initial conditions.

• Region II: CMB perturbations with shorter wavelengths crossed the horizon before the
recombination period. Inside the horizon, the perturbations in the tightly-coupled photon-
baryon fluid moved as sound waves, which were sustained by the high photon pressure. The
oscillation frequency of these waves is determined by their wavelength, so that different
modes were captured at different points in their development when the CMB was released at
photon decoupling. This is the source of the oscillatory pattern seen in the angular power
spectrum of the CMB.

• Region III: At scales smaller than the average distance between photons, the random diffusion
of the photons can cause the density contrast in the plasma to be eliminated, resulting in a
decrease in the magnitude of the wave amplitudes. This has the effect of reducing the power
of the CMB spectrum on small angular scales (high multipole moments)

Out of the three regions, the one of prime interest to us is the region III. The damping tails
in the region are affected significantly (as compared to the other regions) by the amount of total
radiation density before recombination. The SM radiation particles present in that era are neutrinos
and photons. The total radiation density is thus given by

ρrad = ργ +ρν =

[
1+

7
8

(
4

11

)4/3

Neff

]
ργ (2.1)

As we’ll see in the next chapter, that we can tweak the definition of a little bit to incorporate other
BSM degrees of freedom as well such that the above equation would still hold for finding the total
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Figure 2.3: Variation of the CMB temperature power spectrum as a function of . The spectra have
been multiplied by a factor of l2 to emphasize the effects at large l

radiaton density.
Now in the above equation ργ is fixed by the CMB Temperature, but there can be extra radiation
density at the recombination due to some Beyond Standard Model (BSM) lightly coupled species.
Thus gives us a direct measure of the radiation density at the time of recombination. In the figure
below we can see how the value of affects the high multiple (small angular scales) spectrum of
CMB.‘

As expected the damping is larger for a larger (larger radiation density). By using sophistictated
fitting algorithms Planck Collaborators extracted out of these damping tails and the constraint
they obtained is = 2.99±0.17. There are two important conclusions that can be drawn from this
measurement

• Recall that the SM calculated in previous chapter was 3.045. The good news is that this
value falls within the bounds predicted by Planck. However, from the current observations
it is quite likely that the actual value differs from the pedicted SM value. This is where
the theorists get excited! As this (possible) discrepancy b/w the observed and the predicted
value implies that there’s something more happening which is yet to be taken into account in
order to correctly predict . One of the most popular resolution include involving some BSM
degrees of freedom to predict correctly. In the next two chapters we’ve reviewd two such
dark matter models.

• Clearly the current measurement is not precise enough to conclusively determine the presence
or absence of additional degrees of freedom. Hence there have been ongoing efforts to
improve the precision of the measurementsby next generation experiments. We’ll discuss the
implications and forecasts of one such experiment in the next section.

2.2 CMB-S4
CMB observations trace all the way back to 1964, when Penzias and Wilson accidently measured
an everpresent unkown signal in their measurements to look for neutral hydrogen using a radio
telescope at Bell Lab, New Jersey. In 1978 Penzias and Wilson were awarded the Nobel Prize for
the discovery of the CMB. In 1989, NASA sent the Cosmic Background Explorer (COBE) into
space, which verified earlier measurements of the CMB with remarkable precision in 1990. Two
years later, it detected the anisotropies for the first time.
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Since the launch of the Cosmic Background Explorer (COBE) satellite, two other CMB satel-
lites have been used to map the entire sky. The first was the Wilkinson Microwave Anisotropy
Probe (WMAP) which had a moderate angular resolution of up to 12 arcminutes. This was followed
by the Planck satellite which had a resolution of up to 5 arcminutes. Additionally, ground-based ex-
periments such as the 10m South Pole Telescope (SPT) and the 6m Atacama Cosmology Telescope
(ACT) have provided higher-resolution maps of smaller regions of the sky.

CMB-S4[7] is the next-generation ground-based cosmic microwave background experiment.
To get an idea about the improvement in the sensitivity, here’s a plot showing the sensitivity of
recent experiments, expectations for upcoming Stage-3 experiments, characterized by order 10,000
detectors on the sky, and the projection for a Stage 4 experiment with order 100,000 detectors

Figure 2.4: Sensitivity comparison of various CMB experiments

2.2.1 Impact of Improved Sensitivity on measurements

With the improved sensitivty and more precise mesurements at lower angular scales (higher multi-
ploles), the conservative configurations of CMB-S4 can reach σ () ∼ 0.02 - 0.03. What this means
is that if ∆Neff = Neff −NSM

eff is as small as 0.02 - 0.03, our observations would be able to precisely
measure it. At these levels of sensitivity, CMB-S4 can reach a number of compelling targets for
beyond the Standard Model (BSM) physics. Even in the absence of a detection, CMB-S4 would
place constraints that can be orders of magnitude stronger than current probes of the same physics.

The parameter is an attractive theoretical target due to the fact that models of various kinds can
be divided into two main levels of ∆. As demonstrated in Figure2.5, any species that was in thermal
equilibrium with the Standard Model degrees of freedom will lead to a specific adjustment of Neff
that is only dependent on its spin and its freeze-out temperature. If the freeze-out occurs after the
QCD phase transition, then ∆is at least 0.3. On the other hand, if the freeze-out happens before the
QCD phase transition, then ∆is at least 0.027. The first category has already been tested by the data
from the Planck satellite. The second category, which is sensitive to freeze-out temperatures as
high as the reheating temperature, can be explored by the CMB-S4.

The contributions to from hot thermal relics are relatively easy to understand from the discussion
of neutrino decoupling in chapter 1. If we consider a hot thermal relic which decouples before
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Figure 2.5: Contribution to from a massless field that was in thermal equilibrium with the Standard
Model at temperatures T > TF . Temperatures in the grey region correspond to the QCD phase
transition.

neutrinos at a temperature TF , then the temperature of such species just before neutrinos decouple
can be obtained using the arguments of entropy conservation as follows

sFa3
F = sν ,decoupa3

ν ,decoup (2.2)

g∗(TF)T 3
F a3

F = g∗(Tν ,decoup)a3
ν ,decoupT 3

ν ,decoup (2.3)

In the above equation g∗ denotes total degrees of freedom, including an addition factor of 7/8
for fermions. Once the hot relic decouple, the only species that remain in the plasma are photons,
neutrinos, elecctrons an positrons. As we calculated the contribution due to these species to g∗ is
43/4. Also the temperature for hot relic dilutes as a−1 one it decouples. Hence the temperature of
the hot relic at neutrino decoupling is given by

Trelic = aFTF/aν ,decoup (2.4)

=⇒
(

Trelic

Tν ,decoup

)3

=
43/4

g∗(TF)
(2.5)

Once the neutrinos decouple this temperature ratio remains constant as both temperatures dilute
as a−1. As we can see from the equation 2.1, there is extra radiation density contributed due to this
relic, resulting in ∆ given by

∆Neff =


4g
7

(
43/4

g∗(TF )

)4/3
(boson)

g
2

(
43/4

g∗(TF )

)4/3
(fermion)

(2.6)

where g is the number of the independent spin states of the relic itself
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The order of magnitude difference in ∆ before and after the QCD phase transition comes from
an order of magnitude drop in g∗ below the QCD scale. The value of g∗ above QCD scales is
106.75. We can then see from Eq. 2.6 that the minimum value of ∆ for a single real scalar is 0.027,
for a Weyl fermion is 0.047, and for a light vector boson is 0.054.

• ∆ ≥ 0.047 , for models containing additional light particles of spin 1/2, 1 and/or 3/2 A CMB
experiment reaching σ () ∼ 0.02 - 0.03 would be sensitive to all models in this very broad
class of extensions of the Standard Model at 2σ , which includes any thermal population of
gravitinos and dark photons.

• ∆ ≥ 0.027 is predicted for models containing additional light particles of spin 0. A CMB
experiment reaching σ () ∼ 0.02 - 0.03 would be sensitive to all such models at 1σ , which
includes a wide range of models predicting axions and axion-like particles.



3. BSM Neff: Dark matter interacting with the
SM via massive dark photons

3.1 The Model
In this chapter we study the impact of one particular dark matter(DM) model [8] on Neff. The
salient features of this model are

• A DM particle χ coupled to a massive dark photon A’ that is kinetically mixed with the SM
photon.

• A new inert, relativistic degree of freedom ξ , hereby referred to as the equivalent neutrinos
The model parameters include
• mχ - mass of the DM particle
• ∆Nν = 3ρξ/ρν - Change in Neff contributed due to the equivalent neutrinos
• mA′ /mχ - ratio of mass of the dark photon and the DM particle χ

3.2 Temperature Evolution Equations
Since the DM particle χ coupled to a massive dark photon A’ which is mixed with SM photon, we
can assume that the photns Dm particle and the dark photon A’ share a common temperature Tγ and
thus we can write one common equation for the DM particle and the photon sector. This way we
don’t need to take the interactions of DM with SM plasma separately.

dTγ

dt
=−

4Hργ +3H(ρe +Pe)+3H(ρχ +Pχ)+3H(ρA′ +PA′)+3HTγ
dPint
dTγ

+
δρνe

δ t +2
δρνµ

δ t
∂ργ

∂Tγ
+ ∂ρe

∂Tγ
+

∂ρχ

∂Tγ
+

∂ρA′
∂Tγ

+Tγ
d2Pint

dT 2
γ

(3.1)

The evolution equation for the neutrino sector remains the same

dTν

dt
=−

12Hρν − δρνe
δ t −2

δρνµ

δ t

3 ∂ρν

∂Tν

(3.2)

There’s one additional component here, the equivalent neutrinos. Since these particles don’t
interact with any other species, their energy density scales as ρ ∝ a−4. For completeness, we write
the evolution equation for these particles also,
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dTξ

dt
=−

4Hρξ

∂ρξ

∂Tξ

(3.3)

3.3 Neff definition in Beyond Standard Model(BSM) Case

As discussed in chapter 2, the way Neff is measured, it can be affected by all the extra relativistic
species (not just neutrinos) except photons which were present at the time of photon decoupling.
So we modify our original definition of Neff to account for these extra relativistic species

Neff =
8
7

(
11
4

)4/3
ρrad −ργ

ργ

(3.4)

In the SM case ρrad = ρν +ργ and thus we get back the original expression1.13

For the present DM scenario ρrad = ρν +ργ +ρξ

Neff =
8
7

(
11
4

)4/3
ρν +ρξ

ργ

(3.5)

Since, we are following the assumption of equilibrium distribution, we can simplify the above
expression further

Neff = 3

[
11
4

(
Tν

Tγ

)3
]4/3(

1+
ρξ

ρν

)
(3.6)

We relabel the ratio of the enrgy density contained in the equivalent neutrinos ρξ and energy density
of each flavour of the neutrino ρν/3 as ∆Nν which gives us

Neff = 3

[
11
4

(
Tν

Tγ

)3
]4/3(

1+
∆Nν

3

)
(3.7)

3.4 Results

Here are the results from the actual paper vs the results reproduced using our code for Planck . Of
the three parameters of the model, we assumed mA′ /mχ = 3 with χ being a complex scalar and thus
we obtained constraints on the other two parameters ∆Nν and mχ .
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Figure 3.1: Planck Neff constraints on the model (The region b/w the the two contours are the
allowed set of parameter values, while the exterior region is excluded)

The following inferences can be drawn from the above plot
• At masses above approximately 20 MeV, the expected number of Neff approaches the

standard cosmological value. This is because the Dark Matter (DM) freezes out before the
neutrinos decouple, meaning that the DM annihilations heat the electromagnetic and neutrino
sectors in the same way.

• . When the mass of the χ particle is less than 20 MeV, entropy is added to the electromagnetic
sector during and after the neutrino decoupling period (Tνd ∼ 2 MeV). This causes Neff to
be lower than the standard value as the electromagnetic sector is heated more than usual. To
bring Neff back to its observed value, a non-zero ∆Neff must be present.
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