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1 Introduction to Elementary Particles

1.1 Origins

The birth of elementary particle physics was the discovery of electron in 1897
by J.J. Thomson.Then came Rutherford’s α particle scattering experiment
which established the presence of a dense positive charge sitting right at
the centre of an atom.In 1914 Niels Bohr proposed a model for hydrogen
consisting of a single electron revolving around the proton.Bohr conducted
experiments to verify his hypothesis and the results remarkably agreed with
the predictions for a hydrogen atom.But it was soon found out that the nu-
cleus of heavier atoms like Helium,Lithium weighed more than they would
have if they consisted only of protons .The dilemma was resolved in 1932 by
Chadwick’s discovery of neutron-an electrically neutral twin to the proton.

By 1932,though only 3 elementary particles(e−, p+, n) were discovered but
ideas for existence of others were already being discussed and three major
ones were -Yukawa’s meson,Dirac’s positron and Pauli’s neutrino

1.2 Mesons

The discovery of mesons is credited to the very fundamental question ”What
prevents a nucleus from getting torn apart?”.To resolve the issue Physicists
came up with the prediction of ‘Strong Force’(a short range force between
nucleons which supresses the effect of electrostatic repulsion between pro-
tons).Yukawa in 1934 came up with the first significant theory of strong forces
and proposed that neutron and proton are attaracted to each other by some
sort of a field just similar to previously known electrostatic or gravitational
fields.He argued that this field should also be quantized and the correspond-
ing quantum was named mesons(which as we’ll see further turned out to be
wrong) ,precisely because it was predicted to be around 300 times heavy as
compared to an e− and 1/6 th the mass of a proton which makes its mass
lying between the lighter particles(leptons) and heavier particles(baryons).

Experiments conducted on cosmic rays to study and detect these Yukawa’s
mesons ultimately led to the discovery of two middle weight particles-the
lighter and longer lived ”muon”(µ) and the heavier and shorter lived ”pion”(π).
Further studies revealed that muon behaved as a heavier version of electron in
many ways and thus classified as lepton.Pions were the true Yukawa mesons
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which takes part in strong interactions.

1.3 Antiparticle

The first major achievement in the field of ’Relativistic Quantum Mechan-
ics’ was discovery of Dirac’s equation in 1927 by Paul Dirac.The equation
was supposed to describe free electrons with energy given by the relativis-
tic formula E2 − p2c2 = m2c4 .But it had a problem: For every positive-
energy solution (E = +

√
p2c2 +m2c4) there existed a negative-energy solu-

tion (E = −
√
p2c2 +m2c4).This meant that due to the natural tendency of

every system to remain in lower energy states an electron might rush towards
negative states emitting an infinite amount of energy but obviously this is
not the case.Dirac proposed a model to resolve this problem.He postulated
that the negative energy states are all occupied by an infinite sea of elec-
trons.Because this sea is perfectly uniform it doesn’t interact with anything
so we are unable to observe the particles of that sea. If sufficient energy is
provided to an electron in that sea it would lead to the absence of -ve charge
and -ve energy at that position or the presence of a particle with +ve charge
and +ve energy.Such a particle named ’positron’,a positively charged twin
for the electron was discovered in 1931 by Anderson.

1.3.1 Notations for Antiparticles

The standard notation for antiparticles is an overbar.For eg p → proton;
p̄→ antiproton.But in cases of charged particles usually the charge is spec-
ified on the particle.For eg e+ → positron ;µ+ → antimuon.Some neutral
particles are their own antiparticles eg. the photon : γ̄ = γ.

1.3.2 Crossing symmetry

According to the principle of crossing symmetry ,if a reaction

A+B → C +D

is known to occour then any of the particles involved in the reaction can be
”crossed” over to the other side of the equation ,provided it is turned into
its antiparticle,and the resulting reaction will also be allowed.For eg.

A→ B̄ + C +D
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A+ C̄ → B̄ +D
C̄ + D̄ → Ā+ B̄

Note that although a reaction may be dynamically allowed due to the
principle of crossing symmetry it can still be kinematically disallowed.

1.4 Neutrinos

The search for neutrinos began when extensive studies of beta decay were
carried out in 1930’s.In beta decay a radioactive nucleus A is transformed
into another radioactive nucleus B with the emission of an e−

A→ B + e−

For such two particle decays like above simple relativistic energy and momen-
tum conservation equations calculate that the energy of outcoming electron
is given by the equation

Ee =

(
m2
A −m2

B +m2
e

2mA

)
c2

But experiments showed that instead this energy Ee is the maximum
electron energy for a beta decay process.To resolve this problem Pauli pro-
posed the emission of another light, neutral particle in beta decay ,which
carries away a huge fraction of Ee, and named it neutron(which was later
changed to neutrino).Similar observations were also made for pion and muon
decays.So the correct equation for the three decay processes are as follows

n→ p+ + e− + ν̄
π → µ+ ν̄
µ→ e+ 2ν

By 1950 there was a clear theoretical evidence for the existence of neutri-
nos but they were not yet found experimentally.Cowan and Reines conducted
”inverse” beta-decay type of reaction experiments

ν̄ + p+ → n+ e+
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The results of their experiments provided an unambiguous confirmation
of existence of neutrinos.Another question that was posed was since neutrinos
are neutral is there any distinction between neutrino and antineutrino.This
problem was answered by the experiments conducted by Harmer and Davis
who looked for a reaction analogus to

ν + n→ p+ + e−

(from positive test results of Cowan and Reiness,above cross symetric reaction
using neutrinos was sure to occour) using antineutrinos:

ν̄ + n→ p+ + e−

But they found that this reaction does not occour,hence it was proved that
antineutrino and neutrino are two distinct particles.

1.5 Strange Particles

In 1947 Rochester and Butler,while conducting some analysis of cosmic rays
discovered a neutral particle which decays into π+ and π−.This particle was
named Kaon(K0).Two years later Powell found the decay of a charged Kaon
into π+, π+, π−.The Kaons behave as heavy pions so were included in me-
son family. In 1950 another neutral particle Λ was discovered whose decay
products were p+ and π−.Λ must be grouped with neutrons and protons
in baryon family if ’baryon number conservation’(Refer section 2) were to
hold true. Similary other baryons like Σ,Ξ,∆ were found later.All the new
heavy baryons and mesons were collectively called ’strange’ particles.Their
production was fast(around 10−23seconds) but their decay was comparatively
slow(around 10−10seconds).A new quantity called ’strangeness’ was assigned
to each particle,which was conserved in any strong interaction but not in
weak interaction.K’s were assigned strangeness S=+1,the Σ′s and the Λ′s
have S=-1 and the ordinary particles - π,p,n have S=0.
For eg. production of strange particles always take place in pairs and we do
not encounter a single strange particle produced in a reaction.

π− + p+ → K+ + Σ−

π− + p+ 9 π+ + Σ−
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S=0 for both sides in first reaction while S=0 for LHS and S=-1 for RHS,hence
second reaction is not possible.
Since decay of strange particles proceed through weak interaction strangeness
is not conserved in that case.

Λ→ p+ + π−

1.6 The Eightfold Way

The Eightfold Way,first proposed by Murray Gell-Mann was the arrangement
of baryons and mesons into different geometrical patterns,according to their
charge and strangeness.The eight lightest baryons fit into a hexagonal array
with two particles at the center forming the baryon octet.Similarly eight
lightest mesons were arranged in a hexagonal pattern to form the meson
octet which later become meson nonet after discovery of η′.

Figure 1.6.1: The Baryon Octet Figure 1.6.2: The Meson Nonet

10 heavier baryons were arranged in triangular arrays known as baryon
decuplet.Similar octets and decuplets exist for antibaryons as well. In case
of mesons the antiparticles lie in the supermultiplet as the corresponding
particles,in the diametrically opposite directions.For example π+ − π− are a
particle-antiparticle pair.
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Figure 1.6.3: The Baryon Decuplet

1.7 The Quark Model

To explain why do the hadrons fit into these curious patterns Gell-Mann
and Zweig indpendently proposed that all hadrons are in fact composed of
even more elementary particles known as quarks.The quarks come in three
type(”flavors”) forming a triangular ”Eightfold Way” pattern

Figure 1.7.1: The Quark Model Figure 1.7.2: Anti-quarks are just op-
posite in charge and strangeness

Each baryon is composed of three quarks and each meson is composed of
a quark and an antiquark.We can combine the three quarks in 10 different
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ways to obtain the baryon decuplet and a quark and antiquark in 9 different
ways to obtain the meson nonet as shown.The last particle in meson nonet
is η′ which was later added to the meson octet.

Figure 1.7.3: The Baryon Decuplet Figure 1.7.4: The Meson Nonet

One important thing to note here is that the same combination of quarks
can bind together to give different particles.Eg. π+, ρ+ are both ud̄ and
p+,∆+ are both uud.
Just as in a hydrogen atom the electron-proton system has different energy
levels in the same way a given collection of quarks can bind together to
produce several combinations at different energy levels.But the energy levels
spacing in the quarks system is quite high so we consider different states of
a system of given quarks as individual particles.

In spite of the huge success of the quark model ,it had some problems.First
one being that no one has ever been able to observe individual quark.The
phenomena of color confinement is supposed to be an explanation for this
problem which is discussed in section 2.2.2.
The second problem was that the model appeared to violate the Pauli’s
Exclusion Principle according to which no two(or more) particles with half
integer spin can occupy same quantum state within a quantum system.Since
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quarks are also half-integer spin paticle(we’ll discuss later how) Pauli’s prin-
ciple also apply to them.W. Greenberg proposed a solution of this dilemma
in 1964 by suggesting that quarks not only come in three flavor(u,d or s)
but each one of those also come in three colors (”red”, ”green”, ”blue”).A
baryon consists of three quarks one of each color.For eg there are three u’s
in ∆++ one of them being red, the other one being green, and the remaining
oneblue.Since the three quarks are no more identical the dilemma is resolved.

1.8 The November Revolution

In the November of 1974 the discovery of a new particle ψ meson was re-
ported.It had very bizarre properties like an unexpectedly longer lifetime of
10−20s as compared to other 10−23s lifetime of other particles in similar mass
range.Subsequent studies of this meson revealed that ψ represents bound
state of a new quark ,the c (for charm) and its antiquark (ψ = cc̄). The
existence of this fourth quark had been predicted by Glashow and Bjorken
much earlier before its discovery owing to the fact that there were some sim-
ilarities between quarks and leptons.And since both were true fundamental
particles there numbers could also be equal.In 1975 a new lepton (τ) was
discovered and subsequently its corresponding neutrino.This lead to break-
ing of Glashow’g symmetry which was soon restored after the discovery of
two new quarks viz beauty/bottom(b) and truth/top(t). So now we have 6
quarks and 6 leptons in total.

1.9 Intermediate Vector Bosons

In the original beta decay hypothesis of Fermi he treated the process as
a contact interaction occuring at a single point and therefore requiring no
mediating particle.Since weak interactions are very short range forces this
model gave approximately correct results at lower energies.However it was
later found that at higher energies this model would violate and therefore a
need for mediating particles of weak forces was felt.These mediating particles
were named intermediate vector bosons initially and they were 3 in number -
two charged(W+,W−) and one uncharged(Z)and their masses were predicted
to be around 100 times that of proton.Indeed these heavy mediating particles
were observed in CERN proton-antiproton collider.
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1.10 Putting it all together-The Standard Model

Let us sumarrize this discussion of particles and see what all we’ve got.First
we have leptons.There are 3 generations of leptons(e−, µ−, τ−) and each
generation corresponds to the particle and its neutrino.Each lepton has a
corresponding anti-lepton as well.So in total there are 12 leptons(or lep-
tons+antileptons) .

Figure 1.10.1: The three lepton generations

Now coming on to quarks,just like leptons there are 3 quark generations
each comprising of 2 different flavored quarks(making in total 6 different
flavors).Now each quark also comes in three colors which makes there number
18 and each quark has a corresponding anti-quark as well so shooting the
quark number to 36 in total.
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Figure 1.10.2: The three quark generations

Now we discuss about mediating particles.As we know EM force has
photon(γ),and weak force has three mediating particles(W+,W−, Z).Strong
force also has mediating particles named gluons which are 8 in number about
which we’ll study in great detail in subsequent chapters.So in total there are
12 mediating particles.Also there is one another particle known as Higg’s
particle.So in total there are 61 particles.Leptons and Quarks are classified
together as Fermions while the mediating particles along with Higgs particle
are known as Bosons.These Bosons and Fermions together constitute what
is known as ”The Standard Model of Particle Physics”.
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Figure 1.10.3: The Standard Model
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2 Elementary Particle Dynamics

Upto our current understanding of the universe all types of forces in nature
can be classified in the following four types
Note: The strength measures mentioned here are just representative of

Force Strength Theory Mediator
Strong 10 Chromodynamics Gluon

Electromagnetic 10−2 Electrodynamics Photon
Weak 10−13 Flavordynamics W and Z

Gravitational 10−42 Geometrodynamics Graviton

their relative strengths and major fluctuations can be observed in some
cases(especially in Weak Forces).

As evident from the table each type of force has a physical theory belong-
ing to it.We start looking at them one by one starting with Electrodynamics.

2.1 Quantum Electrodynamics (QED)

Of the four theories available QED is the oldest and the most succesful
one.Other theories are modelled on it.We start our discussion of QED by
introducing the notion of Feynman Diagrams.
One of the most basic feynman diagram that can be drawn is that for a re-
pulsive interaction between two electrons also known as Moller Scattering.

Figure 2.1.1: Moller Scattering

The diagram represents interaction of two electrons mediated by a photon.

2 ELEMENTARY PARTICLE DYNAMICS Page 14



Summer of Science Elementary Particle Physics

Note: In all the diagrams I will use the convention that time flows from
left to right ,though some books might use the other convention in which
time is assumed to be flowing from bottom to up.
Also all the particles whose arrowheads point in the forward direction repre-
sent the mentioned particles while the particles with arrowheads pointing in
the backward direction represent the particle going backwards in time and is
interpreted as the corresponding antiparticle going forward in time.

Similarly we can draw following diagrams for interaction of e− and e+

Figure 2.1.2: Bhabha Scattering Figure 2.1.3: Bhabha Scatter-
ing(Another Possible Diagram)

2.1.1 Fine Structure Constant

For a physical process an infinite number of Feynman diagrams can be drawn
consisting of an infinite number of vertices.But each vertex introduces a cou-
pling constant of α = e2/~c (the fine structure constant).So as the number of
vertices increases the contribution keeps on decreasing and usually diagrams
having more than four vertices do not contribute to the final calculations.
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2.2 Quantum Chromodynamics(QCD)

In chromodynamics color plays the role of charge and the fundamental pro-
cess is quark → quark + gluon.Since leptons do not carry color they do not
take part in strong interactions.Unlike one kind of electric charge(which can
either be +ve or -ve) in QED,there are three types of colors(red,green,blue)in
QCD and unlike electrically neutral photon ,gluons carry color.Since at each
vertex color conservation holds true ,the emission of a bicolored gluon would
simply mean that in a strong interaction color of a quark might change
however its flavor remains the same.Directing gluon-gluon coupling is also
possible in QCD due to the assosciation of color with a gluon.

Figure 2.2.1: Interaction beyween two
quarks mediated by a ”gluon”

Figure 2.2.2: Emission of a ’colorless’
gluon

Figure 2.2.3: gluon-gluon coupling

2.2.1 Asymptotic Freedom

In QCD the coupling constant (similar to fine structure constant in QED)
was found to be greater than 1 initially which could have lead to some seri-
ous problems as the contribution of diagrams with larger number of vertices
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would have increased in stead of decresing but it was later found that the
value of this coupling constant was not at all constant and was dependent on
the distance between the interacting particles.At large distances the value of
coupling constant was large but at quite small distances (high energy regime
eg. inside a proton) the value was quite small.This property is known as
asymptotic freedom.The nature of coupling can be found out by looking at
the parameter α = 2f − 11n where f is no. of flavors and n is no. of col-
ors.In standard model f=6 and n=3 so α = −21(negative) hence the coupling
decreases at shorter distances.

2.2.2 Color Confinement

This property of color charged particles(quarks and gluons) to always occur
in colorless combinations is color confinement.

Figure 2.2.4: color confinement

2.3 Quantum Flavorodynamics

There are two types of weak interactions: charged(mediated by W bosons)
and neutral (mediated by Z bosons).Both leptons and quarks take part in
weak interactions

2.3.1 Neutral Weak Interactions

The most fundamental neutral vertex can be drawn as shown in the following
diagram.Some common examples of neutral interactions are νµ-e scattering
or νµ-p sattering.Note that any process mediated by the photon can also be
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mediated by Z but Weak interactions being much weaker than Electromag-
netic interactions makes their detection very difficult in such processes.

Figure 2.3.1: f is any quark or lepton

Figure 2.3.2: νµ-e scattering Figure 2.3.3: νµ-p scattering
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2.3.2 Charged Weak Interactions-Leptons

Figure 2.3.4: Fundamental vertex in
case of leptonic charged weak interac-
tion (l is a negative lepton and νl is
corresponding neutrino)

Figure 2.3.5: µ− + νe → e− + νµ

2.3.3 Charged Weak Interactions- Quarks

At a leptonic charged weak vertex the lepton generation doesn’t change i.e.
e−, νe;µ

−, νµ;τ−, ντalways occur in pairs at each vertex.
But in case of quarks this picture is a bit more complicated.First we look at
the simpler ’generation-preserving’ interactions.The fundamental vertex in
this case looks like as shown below.Note that the color is conserved for this
vertex but flavor changes

Figure 2.3.6: q−1/3:d,s,b;q2/3:u,c,t

The other end of this vertex can couple to leptons(a semi-leptonic process)
or to other quarks(a purely hadronic process).
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Figure 2.3.7: π− → e− + ν̄e Figure 2.3.8: n→ p+e− + ν̄e

Figure 2.3.9: Replacing e− − νe vertex in last
example by quark vertex gives us a purely
hadronic interaction

One imprtant thing to note is that the decay ∆0 → p+ + π− can also
proceed through strong interaction and due to very small contribution from
Weak Mechanism makes its detection quite difficult.

Now we address the ’complications’ referred earlier in case of charged
weak interactions in quarks.There are some interactions like the decay of
lambda (Λ→ p+ + π−) or omega-minus (Ω− → Λ +K−) which can only be
explained if we allow the quark generation to change(for eg strange quark to
up quark in this case)
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Figure 2.3.10: Λ decay Figure 2.3.11: Ω−decay

This inter generation conversion among quarks was explained by using

the argument that instead of

[
u
d

] [
c
s

] [
t
b

]
the weak forces couples the pairs[

u
d′

] [
c
s′

] [
t
b′

]
where d′, s′, b′ are linear combinations of physical quarks d,s,b related by

a 3× 3 Kobayashi-Maskawa matrix as follows

d′s′
b′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 ·
ds
b

 ≈
0.974 0.227 0.004

0.227 0.973 0.042
0.008 0.042 0.999

 ·
ds
b


Here Vudmeasures the coupling of u to d, Vus measures the coupling of u

to s and so on.

2.4 Conservation Laws

All particle decays can be classified in the following three types based on the
fundamental forces that are involved

Type of decay Meanlife
Strong 10−23sec

Electromagnetic 10−16sec
Weak 10−13sec− 15min
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Conservation laws allow us to predict whether a certain decay is pos-
sible or not.Other than kinematic conservation laws of conservation of En-
ergy,Momentum and Angular Momentum there are certain dynamical con-
servation laws that are based on the structure of fundamental vertices that
we have discussed.

1. Charge : Charge is conserved in all three interactions.

2. Color:EM and weak interactions do not affect color.At strong vertex
the color is conserved at both quark-gluon and gluon-gluon vertex.

3. Baryon Number:In every primitive vertex quark number is always
conserved but since due to color confinement individual quarks are
never observed so we keep our discussion confined to Baryons(quark no.
3),Antibaryons(quark no. -3) and mesons(quark no. 0).Accordingly we
assosciate Baryon number(A=1 for Baryons,A=-1 for Antibaryons) and
talk about conservation of Baryon number.However no such analogus
Meson number conservation holds for Mesons owing to the fact that
they have total quark number equal to 0.

4. Lepton Number: Leptons are unaffected by strong forces.In elec-
tromagnetic interactions same lepton comes out which goes in and in
weak interaction also if a lepton goes in ,a lepton comes out (though it’s
nature might change).Infact for the three leptonic generations conser-
vation of electron,muon and tau number also holds separately.(Though
neutrino oscillations might be one possible exception)

5. Flavor: Flavor is conserved at a strong or electromagnetic vertex but
not at weak vertex(for uncharged weak interactions the flavor conser-
vation holds )as in case of charged weak interactions an up quark can
convert into a down or strange quark by emission of a W− boson.

2.5 Towards Grand Unification

Physicists have been proposing various schemes to bring all the fundamental
forces in nature under one roof a single ”Grand Unified Theory(GUT)”.Till
now they’ve been successful in unification electromagnetic and weak force
known as ’Electroweak force’ and unifying it with strong force to a large
extent.
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In our discussion of coupling constants we saw that for electromagnetic
and strong forces the value of coupling constant increases and decreases re-
spectively in high energy regime.For weak forces the value of coupling con-
stant decreses but at a smaller rate .It is proposed that at very high energy
scales( ≈ 1015 Gev) the three coupling constants attain a common value as
shown below.

Figure 2.5.1: Variation of the three coupling
constants with Energy

Another prediction of this GUT model is the prediction of some reactions
like p+ → e+ + π0 or p+ → ν̄µ + π+ where Baryon number conservation does
not hold.However no such proton decays have been observed as of now.
If this unification of strong force with electroweak force works out completely
then Gravity would be the only force left out of this unification model.Several
theories like String Theory,Quantum Gravity have been proposed to achieve
this miraculous task of ultimae grand unification,but none have yet proven
to be completely accurate.
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3 Matrix Mechanics

We are aware that the quantity ‘spin’ has no classical analog and there-
fore it becomes difficult to write vectors, wavefunctions and operators in real
space.Rather we tend to express wavefunctions and operators in an abstract
space.This way of expressing operators and wavefunctions is known as Ma-
trix Mechanics.

The basic idea is that we can write any electron spin state as a linear
combination of the two states α and β:

ψ = cαα + cββ (3.1)

where α =

[
1
0

]
and β =

[
0
1

]
represents vectors corresponding to ‘spin-up’

and ‘spin-down’ states respectively in an abstract vector space.

Equation 3.1 implies that Ψ =

[
cα
cβ

]
is a vector in the same abstract

vector space.
Now we try to transform every operation of wavefunction ψ into an op-

eration of vector Ψ.

1. Integrals replaced with dot products The overlap between any two
wavefunctions can be written as a modified dot product between two
vectors.Eg consider φ = dαα + dββ.Then it can be easily shown that

ˆ
φ∗ψdτ =

[
d∗α d∗β

]
·
[
cα
cβ

]
= Φ† ·Ψ

(3.2)

2. Complex conjugation of the wavefunction is replaced by tak-
ing the adjoint of a vector-Can be concluded directly from equation
3.2

3 MATRIX MECHANICS Page 24



Summer of Science Elementary Particle Physics

3. Normalization and Orthogonalization

ˆ
ψ∗.ψdτ = 1

=⇒ Ψ†.Ψ = 1

=⇒ |c2α|+ |c2β| = 1 (3.3)

ˆ
φ∗.ψdτ = 0

=⇒ Φ†.Ψ = 0

=⇒ d∗α.cα + d∗β.cβ = 0 (3.4)

4. Operators are represented by matrices-For eg.the Ŝz operator will
be transformed into a 2 × 2 matrix in spin space

Ŝz −→ Sz =

[
a b
c d

]
Using Ŝzα = ~

2
α and Ŝzβ = −~

2
β,we can obtain

Sz =
~
2

[
1 0
0 −1

]
(3.5)
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4 Fundamentals of Group Theory

4.1 Symmetry

Symmetry is an operation which we can perform on a system that leaves it
invariant. In 1917 Emmy Noether published her famous theorem relating
symetries and conservation laws.Every symmetry of nature yields a conser-
vation law.Typically there are 4 types of symmetries that we deal with in our
day to day life which are given in the following table along with corresponding
conservation law according to Noether’s Theorem.

Symmetry Conservation Law
Translation in Time ⇐⇒ Energy
Translation in Space ⇐⇒ Momentum

Rotation ⇐⇒ Angular Momentum
Gauge Transformation ⇐⇒ Charge

The set of all symmetry operations (on a particular system)has the fol-
lowing properties.

1. Closure: If Ri and Rj are in the set then the product RiRj is also in
the set i.e. Rk = RiRj for some Rk in the set

2. Identity:There is an element I such that IRi = Ri for all elemnts Ri

3. Inverse:For every elemnetRi there is an invere, R−1i such thatRiR
−1
i =

R−1i Ri = I.

4. Assosciativity:Ri(RjRk) = (RiRj)Rk

These are the defining properties of a mathematical group.Group theory
is the systematic study of symetries.Groups can be finite (like the triangle
group which has 6 elements of symmetry) or infinite(like the group of inte-
gers).We will be covering continuous groups (eg. group of all rotations in a
plane) in a great detail.

4.2 Continuous(Lie) Groups

4.2.1 Introduction

For particle physics it is most natural to introduce the ideas of symmetry in
the context of quantum mechanics. In quantum mechanics, a symmetry of
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the Universe can be expressed by requiring that all physical predictions are
invariant under the wavefunction transformation.

ψ → ψ′ = Ûψ

Û is the operator corresponding to a particular symmetry transformation.The
requirement that all physical predictions are unchanged by a symmetry trans-
formation, gives to rise some constraints on Û .
Invariance of wavefunction normalisation implies

〈ψ|ψ〉 = 〈ψ′|ψ′〉 = 〈Ûψ|Ûψ〉 = 〈ψ|Û †Û |ψ〉
Û †Û = I (4.1)

Here I represents unity,which could be 1 or identity matrix(depending
upon whether ψ is a function or a vector).

Furthermore, for physical predications to be unchanged by a symme-
try operation, the eigenstates of the system also must be unchanged by the
transformation. Hence the Hamiltonian itself must possess the symmetry in
question, Ĥ → Ĥ ′ = Ĥ

The eigen states of the Hamiltonian satisfy Ĥψi = Eiψi,and because of
the invariance of the Hamiltonian, the energies of the transformed eigenstates
ψ′i will be unchanged.

Ĥ ′ψ′ = Ĥψ′i = Eiψ
′
i

ĤÛψi = EiÛψi = ÛEiψi = ÛĤψi

=⇒ [Ĥ, Û ] = ĤÛ − ÛĤ = 0 (4.2)

Hence, for each symmetry of the Hamiltonian there is a corresponding
unitary operator which commutes with the Hamiltonian.

Now we consider a case of 1-D translational symmetry to introduce the
concept of generators. Consider a free particle of mass m having a momen-
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tum px in x-direction.For the particle,

H =
p2

2m

p =
dx

dt

Now let the particle undergo a translation ,

x −→ x′ = x+ ax

The particle’s Hamiltonian and wavefunction change as follows

H −→ H ′ = H

ψ(x) −→ ψ′(x) = Û(ax)ψ(x) = ψ(x+ ax) (4.3)

where Û(ax) is the translational operator which when operated on wavefunc-
tion(or any arbitary function)ψ(x) generates the new wavefunction ψ′(x).
We can use Taylor expansion of ψ(x+ax) about x to obtain the translational
operator Û(ax) .

1ψ(x+ ax) = ψ(x) + ax
∂ψ(x′)

∂x

∣∣∣∣
x′=x

+
a2x
2!

∂2ψ(x′)

∂x2

∣∣∣∣
x′=x

+ · · · (4.4)

=

[
1 + ax

∂

∂x
+
a2x
2!

∂2

∂x2
+ · · ·

]
ψ(x′)

∣∣∣∣
x′=x

(4.5)

= eax
∂
∂xψ(x′)

∣∣∣∣
x′=x

(4.6)

Thus

Û(ax) = exp

[
a
∂

∂x

]
(4.7)

In case of infinitesimal translation δax

ψ′(x) = ψ(x+ a) =

[
1 + δax

∂

∂x

]
ψ(x) +O(δ2(ax)) (4.8)
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For this infinitesimal transformation terms ofO(δ2(ax) can be neglected.using
this approximation any finite transformation can be expressed as a series of
large number of infintesimal transformations as follows

a = N(δa)

ψ(x+ a) = lim
N→∞

[
1 +

a∂

N∂x

]N
ψ(x) (4.9)

So we tend to study only infintesimal transformations.
In case of infintesimal transformations,generally we express the unitary op-
erator Û as,

Û(ε) = I + ιεĜ (4.10)

where ε is an infinitesimally small parameter and Ĝ is called the generator
of the transformation. Since is Û unitary

Û(ε)Û †(ε) = I = (I + ιεĜ)(I − ιε ˆ(G†)) (4.11)

I = I + ιε(Ĝ− Ĝ†) (4.12)

=⇒ Ĝ = Ĝ† (4.13)

Thus, for each symmetry of the Hamiltonian there is a corresponding uni-
tary symmetry operation with an associated Hermitian generator Ĝ. The
eigenstates of a Hermitian operator are real and therefore the operator Ĝ is
associated with an observable quantity G. Furthermore, since Û commutes
with the Hamiltonian, [Ĥ, I + ιεĜ] = 0, the generator Ĝ also must commute
with the Hamiltonian

[Ĥ, Ĝ] = 0 (4.14)

The time evolution of the expectation value of the operator Ĝ is given by

d

dt
〈Ĝ〉 = ι〈[Ĥ, Ĝ] (4.15)

From eq. 4.14,

d

dt
〈Ĝ〉 = 0 (4.16)
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Hence, for each symmetry of the Hamiltonian, there is an associated observ-
able conserved quantity G which is the expression of Noether’s theorem.

Now we’ll return back to our example of 1D translation to analyse which
observable quantity is assosciated with its generator but befor we do that
,we observe that unitary operator for 3D translation can be constructed just
like in 1D case.
It can be easily verified that

Û(a) = exp(a.∇) = exp(ax
∂

∂x
+ ay

∂

∂y
+ az

∂

∂z
) (4.17)

where a = axx̂+ ayŷ + az ẑ is the translation in 3d coordinates. Now we try
to write eq 4.8 using the definition of linera momentum operator(−ι~ ∂

∂x
),

ψ(x+ a) =

[
1 + δax.(

ιp̂x
~

)

]
ψ(x) (4.18)

Comparing with eq 4.10 we can conclude that generator Ĝ for 1D trans-
lation operator Û(ax) is the linear momentum operator in 1D p̂x.
This result can be further extended to 3D translation.But unlike 1D case
here we would get a set of three generators p̂x, p̂y, p̂z corresponding to 3 in-
fintesimal parameters (εx, εy, εz).
In general, a symmetry operation may depend on more than one parameter,
and the corresponding infinitesimal unitary operator can be written in terms
of the set of generators Ĝ = {Ĝi}

Û = 1 + ιε.Ĝ (4.19)

where ε = {εi}

From the result of eq 4.16 we can easily conclude that the quantity which
remains conserved in case of translational symmetry is linear momentum.

4.2.2 Rotational symmetry and SO(3) groups

Again we consider a particle undergoing a rotation,

r −→ r′ = R(ψ, n̂)r
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Here ψ is the magnitude of angle of rotation and n̂ is unit vector along the
axis of rotation.
For simplicity let us consider rotation along ẑ.One thing to note here is that
from now we’ll use matrix mechanics for representation of operators and
wavefunctions.

R(δψ, ẑ) =

 cos(δψ) sin(δψ) 0
−sin(δψ) cos(δψ) 0

0 0 1


≈

1 0 0
0 1 0
0 0 1

+

 0 1 0
−1 0 0
0 0 0

 .δψ (4.20)

Also we observe that

r′ = r + δr

(4.21)

where δr = δψyx̂− δψxŷ for rotation along z-axis.

δrz = δψz × r
δrR = δψR × r (4.22)

Now we try to find unitary operator and generators for rotation.

ÛR(ψ.n̂)Ψ(r) = Ψ′(r)

ÛR(ψ.n̂)Ψ(r) = Ψ(r − δr) (4.23)

Using Taylor series expansion,

ÛR(ψ.n̂)Ψ(r) = Ψ(r)− δr.∇Ψ(r) (4.24)

ÛR(ψ.n̂)Ψ(r) = Ψ(r)− (δψ × r).∇Ψ(r) (4.25)

We have

∇Ψ(r) =
ι

~
p̂Ψ(r) (4.26)
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where

p̂ =
~
ι

[
∂

∂x
+

∂

∂y
+

∂

∂z

]

ÛR(ψ.n̂)Ψ(r) =
[
1− (

ι

~
δψ × r).p̂

]
Ψ(r) (4.27)

ÛR(ψ.n̂)Ψ(r) =
[
1− ι

~
δψ.(r × p̂)

]
Ψ(r) (4.28)

In the above equation the termr × p can be identified as orbital angular
momentum.Comparing with 4.10 we can conclude that

L̂x, L̂y, L̂z −→ generators

δψx, δψy, δψz −→ parameters

for rotations in 3D space.
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5 Flavour symmetry

In the early days of nuclear physics, it was realised that the proton and
neutron have very similar masses and that the nuclear force is approximately
charge independent.To reflect this observed symmetry of the nuclear force, it
was proposed that the neutron and proton could be considered as two states
of a single entity, the nucleon, analogous to the spin-up and spin-down states
of a spin-half particle.

p =

[
1
0

]
n =

[
0
1

]
This led to the introduction of the idea of isospin, where the proton and neu-
tron form an isospin doublet with total isospin I = 1/2 and third component
of isospin I3 = ±1/2. The charge independence of the strong nuclear force is
then expressed in terms of invariance under unitary transformations in this
isospin space.

The idea of proton/neutron isospin symmetry can be extended to the
quarks. Since the QCD interaction treats all quark flavours equally, the
strong interaction possesses a flavour symmetry analogous to isospin symme-
try of the nuclear force.
The above idea can be developed mathematically by writing the up and down
quarks as states in an abstract flavour space.

u =

[
1
0

]
d =

[
0
1

]
If the up- and down-quarks were indistinguishable, the flavour independence
of the QCD interaction could be expressed as an invariance under a general
unitary transformation in this abstract space[

u′

d′

]
= Û

[
u
d

]
(5.1)

The operator Û must satisfiy Û Û † belongs to the U(2) group.This condition
leads to 4 independent parameters and hence 4 generators corresponding to
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unitary operator Û 3 of which belong to SU(2) subgroup. A suitable choice
for three Hermitian traceless generators of the ud flavour symmetry are the
Pauli spin-matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −ι
ι 0

]
, σ3 =

[
1 0
0 −1

]
The ud flavour symmetry corresponds to invariance under SU(2) trans-

formations leading to three conserved observable quantities defined by the
eigenvalues of Pauli spin-matrices. The algebra of the ud flavour symmetry
is therefore identical to that of spin for a spin-half particle. In analogy with
the quantum-mechanical treatment of spin-half particles, isospin T̂ is defined
in terms of the Pauli spin-matrices

T̂ =
1

2
σ (5.2)

Any finite transformation in the up–down quark flavour space can be
written in terms of a unitary transformation

Û = eια.T̂ (5.3)

Hence, the general flavour transformation is a “rotation” in flavour space

5.1 Isospin algebra

The three generators of the group, which correspond to physical observables,
satisfy the algebra

[T̂1, T̂2] = ιT̂3 (5.4)

[T̂2, T̂3] = ιT̂1 (5.5)

[T̂3, T̂1] = ιT̂2 (5.6)

This is exactly the same set of commutators as found for the quantum me-
chanical treatment of angular momentum.The total isospin operator,

T̂ 2 = T̂ 2
1 + T̂ 2

2 + T̂ 2
3 (5.7)

which commutes with each of the generators, is Hermitian and therefore also
corresponds to an observable quantity. Because the three operators T̂1, T̂2 and
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T̂3 do not commute with each other,the corresponding observables cannot be
known simultaneously.Hence, isospin states can be labelled in terms of the
total isospin I and the third component of isospin I3. These isospin states
ψ(I, I3) are the mathematical analogues of the angular momentum states
〈l,m|and have the properties

T̂ 2φ(I, I3) = I(I + 1)φ(I, I3) (5.8)

T̂3φ(I, I3) = I3φ(I, I3) (5.9)

In terms of isospin, the up-quark and down-quark are represented by

u =

[
1
0

]
= φ(

1

2
,+

1

2
) (5.10)

d =

[
0
1

]
= φ(

1

2
,−1

2
) (5.11)

Figure 5.1.1: The isospin one-half multiplet
consisting of an up-quark and a down-quark.

The isospin ladder operators are defined as

T̂− ≡ T̂1 − ιT̂2 (5.12)

T̂+ ≡ T̂1 + ιT̂2 (5.13)

The action the ladder operators on a particular isospin state are

T̂+φ(I, I3) =
√
I(I + 1)− I3(I3 + 1)φ(I, I3 + 1) (5.14)

T̂−φ(I, I3) =
√
I(I + 1)− I3(I3 − 1)φ(I, I3 − 1) (5.15)

In case of extreme states with I3 = ±I

T̂−φ(I,−I) = 0 (5.16)

T̂+φ(I,+I) = 0 (5.17)

So we can conclude that the effects of isospin ladder operators on the u-
and d- quarks are
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T̂+u = 0, T̂+d = u, T̂−u = d and T̂−d = 0

Figure 5.1.2: The isospin ladder operators
step along the states in I3 within an isospin
multiplet

5.2 Combining quarks into baryons

5.2.1 Combination of two quarks

As every symmetry is assosciated with a conserved observable quantity(measured
by the corresponding generators),in the case of flavour symmetry in strong
interactions also we have I and I3 as the conserved observables.Because I3
and I are conserved in strong interactions, the concept of isospin is useful
in describing low energy hadron interactions. Here we’ll use the concept of
isospin to construct the flavour wavefunctions of baryons (qqq) and mesons
(qq̄).
when combining a system of two quarks the third component of isospin is
added as a scalar and the total isospin is added as the magnitude of a vec-
tor.r. If two isospin states φ(Ia, Ia3 ) and φ(Ib, Ib3) are combined, the resulting
isospin state (I, I3) has

I3 = Ia3 + Ib3 (5.18)

|Ia − Ib| ≤ I ≤ |Ia + Ib| (5.19)

The I3 assignments of the four possible combinations of two light quarks
are shown in figure 5.2.1.The isospin assignments for the extreme states im-
mediately can be identified as

uu = φ(1,+1) and dd = φ(1,−1)
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Figure 5.2.1: The I3 assignments for the four
possible combinations of two up- or down-
quarks

The quark combinations ud and du, which both have I3 = 0, are not
eigenstates of total isospin. The appropriate linear combination correspond-
ing to the I = 1 state can be identified using isospin ladder operators,

T̂−φ(1,+1) =
√

2φ(1, 0) = T̂−(uu) = ud+ du (5.20)

=⇒ φ(1, 0) =
1√
2

(ud+ du) (5.21)

The φ(0, 0) state can be identified as the linear combination of ud and du
that is orthogonal to φ(1, 0), from which

φ(0, 0) =
1√
2

(ud− du) (5.22)

Figure 5.2.2: The isospin assignments for the
combinations of two quarks

The four possible combinations of two isospin doublets therefore decom-
poses into a triplet of isospin-1 states and a singlet isospin-0 state, as shown
in Figure 5.2.1. This decomposition can be written as 2⊗2 = 3⊕1.Note that
isospin-0 and isospin-1 states are physically different; the isospin-1 triplet is
symmetric under interchange of the two quarks, whereas the isospin singlet
is antisymmetric.
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5.2.2 Combination of three quarks

Figure 5.2.3: The I3 assignments for three
quark system built from qq triplet and sin-
glet states

The isospin states formed from three quarks can be obtained by adding an
up or down-quark to the qq isospin singlet and triplet states of Figure 5.2.1.
Since I3 adds as a scalar, the I3 assignments of the possible combinations are
those shown in Figure 5.2.2.
The two states built from the I = 0 singlet will have total isospin I = 1/2,
whereas those constructed from the I = 1 triplet can have either I = 1/2 or
I = 3/2. Of the six combinations formed from the triplet, the extreme ddd
and uuu states with I3 = −3/2 and I3 = +3/2 uniquely can be identified as
being part of isospin I = 3/2 multiplet. The other two I = 3/2 states can
be identified using the ladder operators.
For example, the φ

(
3
2

)
state , which is a linear combination of the ddu and

1√
2
(ud + du)d states, can be obtained from the action of T̂+ as follows

T̂+φ

(
3

2
,−3

2

)
=
√

3φ

(
3

2
,−1

2

)
= T̂+(ddd) (5.23)

= udd+ dud+ ddu (5.24)

=⇒ φ

(
3

2
,−1

2

)
=

1√
3

(uud+ dud+ ddu) (5.25)

Similarly by operation of ladder operator T̂− on T̂−φ
(
3
2
, 3
2

)
= uuu gives

us the state φ
(
3
2
, 1
2

)
.
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Finally the four isospin 3
2

states constructed from the qqq triplet are

φ

(
3

2
,−3

2

)
= ddd (5.26)

φ

(
3

2
,−1

2

)
=

1√
3

(udd+ dud+ ddu) (5.27)

φ

(
3

2
,+

1

2

)
=

1√
3

(uud+ udu+ duu) (5.28)

φ

(
3

2
,+

3

2

)
= uuu (5.29)

The two states obtained from the qqq triplet with total isospin I = 1/2
are orthogonal to the I3 = ±1/2 states of 5.27 and 5.28 respectively.Hence,
the φ

(
1
2
,−1

2

)
state can be identified as the linear combination of ddu and 1√

2

(ud + du)d that is orthogonal to the φ
(
3
2
,−1

2

)
state of 5.27, giving

φS

(
1

2
,−1

2

)
= − 1√

6
(2ddu− udd− dud) (5.30)

Similarly,

φS

(
1

2
,+

1

2

)
=

1√
6

(2uud− udu− duu) (5.31)

The two states constructed from the qq isospin singlet of 5.22 are

φA

(
1

2
,−1

2

)
=

1√
2

(udd− dud) (5.32)

φA

(
1

2
,+

1

2

)
=

1√
2

(udu− duu) (5.33)
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Figure 5.2.4: The three quark states(qqq) in SU(2) flavoug symmetry

Hence, the eight combinations of three up- and down-quarks, uuu, uud,
udu, udd, duu, dud, ddu and ddd, have been grouped into an isospin- 3

2

quadruplet and two isospin- 1
2

doublets, as shown in Figure 5.2.2.
In terms of the SU(2) group structure this can be expressed as

2⊗ 2⊗ 2 = 2⊗ (3⊕ 1) = (2⊗ 3)⊕ (2⊗ 1) = 4⊕ 2⊕ 2

where 2⊗ 2⊗ 2 represents the combinations of three quarks represented
as isospin doublets.

The different isospin multiplets have different exchange symmetries. The
flavour states in the isospin -3

2
quadruplet, 5.26 − 5.29,are symetric under

the interchange of any two quarks.The isospin- 1
2

doublets are referred to as
mixed symmetry states to reflect the symmetry under the interchange of the
first two quarks, but lack of overall exchange symmetry.

5.3 Combining quarks into mesons

A mesons is a bound state of a quark and an antiquark(qq̄).We are already
familiar with isospin represntation of quarks so let’s have a look at isospin
representations for antiquarks.
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5.3.1 Isospin represntations of antiquarks

Figure 5.3.1: The isospin representation of d and u quarks and d̄ and ū quarks

In the above description of SU(2) flavour symmetry, the up- and down-quarks
were placed in an isospin doublet

q =

[
u
d

]
A general SU(2) transformation of the quark doublet, q −→ q′ = Uq,(where

U ∈ SU(2) group) can be written

[
u
d

]
−→

[
u′

d′

]
=

[
a b
−b∗ a∗

]
·
[
u
d

]
(5.34)

Hence taking the complex conjugate of 5.34 gives the transformation prop-
erties of the flavour part of the antiquark wavefunctions

[
ū′

d̄′

]
= U∗

[
ū
d̄

]
=

[
a∗ b∗

−b a

]
·
[
ū
d̄

]
(5.35)

In SU(2) it is possible to place the antiquarks in a doublet that transforms
in the same way as the quarks, q̄ −→ q̄′ = Uq̄. If the antiquark doublet is
written as

q̄ ≡
[
−d̄
ū

]
= S

[
ū
d̄

]
=

[
0 −1
1 0

] [
ū
d̄

]
(5.36)

Since [
ū
d̄

]
= S−1q̄ and

[
ū′

d̄′

]
= S−1q̄′,
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Rewriting 5.35

S−1q̄′ = U∗S−1q̄

q̄′ = SU∗S−1q̄

q̄′ = Uq̄ (5.37)

Hence, by placing the antiquarks in an SU(2) doublet defined by

q̄ ≡
[
−d̄
ū

]
the antiquarks transform in exactly the same manner as the quarks.It also
ensures that quarks and antiquarks behave in the same way under SU(2)
flavour transformations and that physical predictions are invariant under the
simultaneous transformations of the form u↔ d and ū↔ d̄.
The effect of the isospin ladder operators on the antiquark doublet can be
seen to be

T+ū = −d̄, T+d̄ = 0, T−ū = 0 and T−d̄ = −ū

5.3.2 Meson States

In terms of isospin, the four possible states formed from up- and down-
quarks/antiquarks can be expressed as the combination of an SU(2) quark
doublet and an SU(2) antiquark doublet. Using the isospin assignments of
Figure 5.3.1, the du state immediately can be identified as the qq̄ isospin
state, φ(1,−1). Application of isospin ladder operator T̂+ yields other states
as well,

φ(1,−1) = dū (5.38)

φ(1, 0) =
1√
2

(uū− dd̄) (5.39)

φ(1,+1) = −ud̄ (5.40)

The isospin singlet,which must be orthogonal to the φ(1, 0) state,is therefore

φ(0, 0) =
1√
2

(uū+ dd̄) (5.41)
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Figure 5.3.2: The qq̄ isospin triplet and singlet states

This decomposition into an isospin triplet and an isospin singlet is ex-
pressed as 2⊗ bar2 = 3⊕ 1, where the 2 is the isospin representation of the
quark doublet and the 2̄ is the isospin representation of doublet.
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6 Summary

In this report we started with a basic introduction to different types of par-
ticles ,their properties and the ways they are classified.Then we looked at
dynamics of these particles and studied different conservation laws which
can be used to predict the outcome of a particular nucler reaction.In the
subsequent sections we introduced Lie groups and the concept of generators.
Later we analysed Flavour Symetry and introduced isospin as the corre-
sponding conserved quantity to construct bound states of combination of
three quarks(Baryon) and a quark and an antiquark(Meson).

We’ve seen how to construct bound states by taking up and down quarks
and working with 2 × 2 unitary matrices (SU(2) flavour symmetry).We can
extend this further by taking into account strange quarks as well and thus
invoking SU(3) flavour symmetry . This can ultimately be used to generate
different quark models viz; Baryon octets and decuplets and Meson nonets.
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