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Killing Horizons

Killing Horizons

If a killing vector field x* is null along some null hypersurface
>, then X is said to be a killing horizon of y*

For eg. in Minkowski space x = x0; + t0x is killing vector
field which generates boost in x-direction and it becomes null
at null hypersurfaces x = 4t. Hence these are killing horizons
of x

To every event horizon we can assosciate a killing vector which
is null at the horizon and so we can say every event horizon is
a killing horizon for some killing vector field but not vice versa

For eg. 0; is a killing vector field for Schwarzschild event
horizon
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RN Metric

o ds? = —Adt? + A71dr? + r?d6? + r?sin®0d¢?
2
e A=1-26M 4 6Q

e Asymptotically flat, spherically symmetric and static
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Singularities of the metric

® True(curvature) singularity at r=0

¢ Coordinate singularity(horizons) at A =0

Black Hole Thermodynamics
00000

® Setting A=1-— 2GfM + GQ equal to 0 three possible cases

arise

1. GM? > @2 - Black Hole with two event horizons

2. GM? = Q? - Extremal Black Hole
3. GM? < Q? - Naked Singularity
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GM? > Q? -Black Hole with two event horizons
® Two event horizons at rp = GM 4+ /G2M? — GQ?2

e Causal structure of radial light rays

0=—Adt?> + A 1dr?
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Reissner Nordstrom Solution
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GM? > Q2 -Black Hole with two event horizons

® In region | and Il 0; is timelike and O, is spacelike while in
region |l O; is spacelikelike and 9, is timelike

® Since 0 is also a killing vector which is null at event horizons
(null surfaces) so just like Schwarzschild case, here also the
event horizons are killing horizons of the metric

® For an observer freely falling inside a RN black hole it can be
proved that it never reaches the singularity at r=0

® The observer can manage to reach t = oo in a finite proper
time and thus can escape from the black hole into another
region of spacetime
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GM? = Q? -Extremal Black Hole

® Not stable solutions as a slight charge may drive them to case
[

® Casual structure of radial light rays (Absence of region 1)
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GM? < @? -Naked Singularity

® |f such a spacetime exist , then the singularity would be visible
to the naked eyes of an observer at any radial coordinate

® But naked singularities arising from a gravitational collapse
are usually forbidden in asymptotically flat spacetime . This is
the famous Cosmic Censorship Conjencture formulated by
Roger Penrose in 1969
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Kerr metric for rotating black holes

. dsz _ (1 - M) dt? — 26Marsn0 iyl + dt) +
£dr? + p2d6? + M [(r? + a)? — a®Asin? 0] d¢?

° 5= ﬁ ; angular momentum per unit mass of black hole

* A=r?-2GMr+ a°

® p2=1r2+2a%cos?f
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Properties of Kerr metric

® Axisymmetric and asymptotically flat

Staticity lost (due to a cross term dtd¢)

Stationary (No explicit time dependence of g,,)

The range of the Boyer-Lindquist coordinates of the Kerr
metric with a>0ist € R, rc R, (6,¢) € 52
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Singularities of the metric
® True(curvature) singularity at p =0

® Equating r? + a® cos? f to 0 we get , the curvature singularity
at r> =0and § = /2

® Ring singularity
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Singularities of the metric

e Coordinate singularity(horizons) at A =0

e Setting A = r?> — 2GMr + a® equal to 0 three possible cases
arise

1. GM? > a? - Kerr Black Hole with two event horizons at
ry = GM &£/ GM? — 32

2. GM? = 22 - Extremal Kerr Black Hole with event horizon at
r=GM

3. GM? < a? - Naked Singularity
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Killing vectors of the metric
® As metric is not explicitly dependent on t and ¢ components,
so K = 0; and R = 0, are two killing vector fields

® Unlinke Schwarzschild and R-N case, 0: is not null at event
horizon, in fact it beccomes null at a value of r > ry

® The surface at which 0; becomes null is given by

gt =0
= p?> —2GMr =0
— r2 —2GMr + a*cos?§ = 0
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Ergosphere

er/m
=Ty

Stationary Limit Surface

Outer Event Horizon
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Ergosphere

Outside ergoregion 0; is timelike , while it is spacelike inside
ergodic region

The outer boundary of ergodic region is known as Stationary
Limit Surface because any observer inside the region can't
remain at rest.

However for a suitable constant 2 = dt ¢ observer can manage
to remain at a constant r > ry

At horizon r = ry there is a fixed value of Q = also

_a
r2+a’
known as angular velocity of event horizon(Qp)
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Killing vector associated with horizon

e Killing vector field for which the outer event horizon of a kerr
black hole is a killing horizon is

§=0: +Qp0y

® Forr>ry, 0¢ + Qn0y is timelike while it is spacelike for
r<ry
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Penrose Process

® For a freely falling particle the timelike geodesic
v(1) = (t(7), r(7),0(7), ¢(7) has the tangent vector

Y = 10; + FO, + 005 + $0,

(the derivatives are wrt 7)

® Total energy E of a particle moving along a geodesic(which is

a constant of motion) is given by

E=—-gup'K"
= —gup' — gsp°®

< 2GMr) dt
=m(1l-— +

p? ) dr

= _mg(’% at)

2mGMar

) do
2
2 sin H—dT
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Penrose Process

® 4 is always timelike while O; is timelike outside stationary limit
surface and spacelike inside it. So E is necessarily positive
outside ergoregion while it can be positive or negative inside it.

® Angular Momentum L of a particle moving along a
geodesic(which is also a constant of motion) is given by

L=gup'R"
= —8poP’ — gotP"
m(r? + a%)? — mAa®sin’0 . d¢ 2mGMar . , dt
= 5 sinff— — ———sin" 60—
p dr o dr

= m.g(¥,0s)
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Penrose Process

® As & = 0: + QH0Oy is timelike in ergoregion we have,

guwp"E” <0
= gup'(K" +QuR") <0
— —E+QulL <0

= L<£
Qu

® This means if a particle has negative energy inside ergoregion,
it must also have negative angular momentum
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Penrose Process

e If we consider a particle with total energy E(> 0) freely falling
into the ergoregion and decaying into two particles with
energies E1(> 0) and Ex(< 0) respectively inside the
ergoregion then following two things are observed

1. The particle with E;(< 0) can never come out of ergoregion as
it has negative energy and it would ultimately be sucked by

Black Hole

2. The decaying process can be arranged such that the particle
with energy E;(> 0) can come out of ergoregion and thus we

have following energy balance

Black Hole | Outside Particle
Initial Energy E, E
Final Energy | E, + E» < E, Ei>E
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Penrose Process

® This is how we can extract energy from a Kerr Blackhole

® As the particle has energy E; < 0, it also has an angular
momentum Ly < 0, so in the process both energy and
angular momentum of blackhole keeps on decreasing and the
ergoregion also starts getting contracted

® The process goes on until the angular momentum of
blackholes becomes 0 and the blackhole becomes a
Schwarzschild blackhole so that the ergoregion finally
disapperars
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Surface Gravity(k)

® In Newtonian gravity, the surface gravity of a gravitating body
is just the acceleration experienced at its surface by a test
particle. For the Earth, the surface gravity is 9.8 m/s? .

® Similarly for an event horizon, surface gravity can be defined
as acceleration of a static observer near the horizon (as
measured by static observer at infinity).

® For a test particle at radius r, in Schwarzschild spacetime ,
magnitude of four acceleration is given by

JEmai = —2M
v =T
2r2\/1— M
. 2GM 2GM 1
ne II5“(;/\// 1= r 2am |~ 4GM
o ° 2r3\ /1= 22
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Surface Gravity(k)

® Similarly we can find surface gravity of a kerr blackhole

rp—m m? — 32
2mre 2m(m+ \/m? — a?)
(m= GM)

(M — Mass of Black Hole)
(r+ — Radius of outer event horizon) .
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Area of event horizon

® For a kerr black hole, at outer event horizon surface line
element ds is given by

P 2 L 2)26in29
vijdx'dx) = ds® = (r} +a* cos” 0)d6*+ (rf + %) sin do?

rfr + a2 cos26

® This induced metric can be integrated at outer event horizon
surface to obtain the area of event horizon

A= /mdedgb = /(r_i + a%)sin0dfd¢

A= 4n(r? + a°)
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Setting up the Analogy

Black Hole Thermodynamics
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Analogy with Laws of Thermodynamics

Law Ideal Gas Kerr Black Hole
0™ Law | For a system in equilibrium the | The surface gravity is a con-
temperature is a constant stant (on the horizon)
15t Law | dU = TdS -PdV GdM = k/8mdA + QpdJ
2" Law | 65 >0 SA>0

0A > 0 is the famous Area Theorem given by Stephen Hawking
in the year 1971
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