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Killing Horizons

• If a killing vector field χµ is null along some null hypersurface
Σ, then Σ is said to be a killing horizon of χµ

• For eg. in Minkowski space χ = x∂t + t∂x is killing vector
field which generates boost in x-direction and it becomes null
at null hypersurfaces x = ±t. Hence these are killing horizons
of χ

• To every event horizon we can assosciate a killing vector which
is null at the horizon and so we can say every event horizon is
a killing horizon for some killing vector field but not vice versa

• For eg. ∂t is a killing vector field for Schwarzschild event
horizon
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RN Metric

• ds2 = −∆dt2 +∆−1dr2 + r2dθ2 + r2sin2θdϕ2

• ∆ = 1− 2GM
r + GQ2

r2

• Asymptotically flat, spherically symmetric and static
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Singularities of the metric

• True(curvature) singularity at r=0

• Coordinate singularity(horizons) at ∆ = 0

• Setting ∆ = 1− 2GM
r + GQ2

r2
equal to 0 three possible cases

arise

1. GM2 > Q2 - Black Hole with two event horizons
2. GM2 = Q2 - Extremal Black Hole
3. GM2 < Q2 - Naked Singularity
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GM2 > Q2 -Black Hole with two event horizons
• Two event horizons at r± = GM ±

√
G 2M2 − GQ2

• Causal structure of radial light rays

0 = −∆dt2 +∆−1dr2
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GM2 > Q2 -Black Hole with two event horizons

• In region I and III ∂t is timelike and ∂r is spacelike while in
region II ∂t is spacelikelike and ∂r is timelike

• Since ∂t is also a killing vector which is null at event horizons
(null surfaces) so just like Schwarzschild case, here also the
event horizons are killing horizons of the metric

• For an observer freely falling inside a RN black hole it can be
proved that it never reaches the singularity at r=0

• The observer can manage to reach t = ∞ in a finite proper
time and thus can escape from the black hole into another
region of spacetime
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GM2 = Q2 -Extremal Black Hole
• Not stable solutions as a slight charge may drive them to case
I

• Casual structure of radial light rays (Absence of region II)
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GM2 < Q2 -Naked Singularity

• If such a spacetime exist , then the singularity would be visible
to the naked eyes of an observer at any radial coordinate

• But naked singularities arising from a gravitational collapse
are usually forbidden in asymptotically flat spacetime . This is
the famous Cosmic Censorship Conjencture formulated by
Roger Penrose in 1969
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Kerr metric for rotating black holes

• ds2 = −
(
1− 2GMr

ρ2

)
dt2 − 2GMar sin2 θ

ρ2
(dtdϕ+ dϕdt) +

ρ2

∆2 dr
2 + ρ2dθ2 + sin2θ

ρ2

[
(r2 + a2)2 − a2∆sin2 θ

]
dϕ2

• a = J
M ; angular momentum per unit mass of black hole

• ∆ = r2 − 2GMr + a2

• ρ2 = r2 + a2 cos2 θ
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Properties of Kerr metric

• Axisymmetric and asymptotically flat

• Staticity lost (due to a cross term dtdϕ)

• Stationary (No explicit time dependence of gµν)

• The range of the Boyer-Lindquist coordinates of the Kerr
metric with a > 0 is t ∈ R, r ∈ R , (θ, ϕ) ∈ S2
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Singularities of the metric

• True(curvature) singularity at ρ = 0

• Equating r2 + a2 cos2 θ to 0 we get , the curvature singularity
at r2 = 0 and θ = π/2

• Ring singularity
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Singularities of the metric

• Coordinate singularity(horizons) at ∆ = 0

• Setting ∆ = r2 − 2GMr + a2 equal to 0 three possible cases
arise

1. GM2 > a2 - Kerr Black Hole with two event horizons at
r± = GM ±

√
GM2 − a2

2. GM2 = a2 - Extremal Kerr Black Hole with event horizon at
r = GM

3. GM2 < a2 - Naked Singularity
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Killing vectors of the metric

• As metric is not explicitly dependent on t and ϕ components,
so K = ∂t and R = ∂ϕ are two killing vector fields

• Unlinke Schwarzschild and R-N case, ∂t is not null at event
horizon, in fact it beccomes null at a value of r > r+

• The surface at which ∂t becomes null is given by

gtt = 0

=⇒ ρ2 − 2GMr = 0

=⇒ r2 − 2GMr + a2 cos2 θ = 0
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Ergosphere
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Ergosphere

• Outside ergoregion ∂t is timelike , while it is spacelike inside
ergodic region

• The outer boundary of ergodic region is known as Stationary
Limit Surface because any observer inside the region can’t
remain at rest.

• However for a suitable constant Ω = dϕ
dt observer can manage

to remain at a constant r > r+

• At horizon r = r+ there is a fixed value of Ω = a
r2++a2

, also

known as angular velocity of event horizon(ΩH)
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Killing vector associated with horizon

• Killing vector field for which the outer event horizon of a kerr
black hole is a killing horizon is

ξ = ∂t +ΩH∂ϕ

• For r > r+, ∂t +ΩH∂ϕ is timelike while it is spacelike for
r < r+
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Penrose Process
• For a freely falling particle the timelike geodesic
γ(τ) = (t(τ), r(τ), θ(τ), ϕ(τ) has the tangent vector

γ̇ = ṫ∂t + ṙ∂r + θ̇∂θ + ϕ̇∂ϕ

(the derivatives are wrt τ)

• Total energy E of a particle moving along a geodesic(which is
a constant of motion) is given by

E = −gµνp
µK ν

= −gttp
t − gtϕp

ϕ

= m

(
1− 2GMr

ρ2

)
dt

dτ
+

2mGMar

ρ2
sin2 θ

dϕ

dτ

= −m.g(γ̇, ∂t)



19/27

Killing Horizons Reissner Nordström Solution Kerr Solution Penrose Process Black Hole Thermodynamics

Penrose Process

• γ̇ is always timelike while ∂t is timelike outside stationary limit
surface and spacelike inside it. So E is necessarily positive
outside ergoregion while it can be positive or negative inside it.

• Angular Momentum L of a particle moving along a
geodesic(which is also a constant of motion) is given by

L = gµνp
µRν

= −gϕϕp
ϕ − gϕtp

t

=
m(r2 + a2)2 −m∆a2 sin2 θ

ρ2
sin θ

dϕ

dτ
− 2mGMar

ρ2
sin2 θ

dt

dτ

= m.g(γ̇, ∂ϕ)
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Penrose Process

• As ξ = ∂t +ΩH∂ϕ is timelike in ergoregion we have,

gµνp
µξν < 0

=⇒ gµνp
µ(K ν +ΩHR

ν) < 0

=⇒ − E +ΩHL < 0

=⇒ L <
E

ΩH

• This means if a particle has negative energy inside ergoregion,
it must also have negative angular momentum
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Penrose Process

• If we consider a particle with total energy E(> 0) freely falling
into the ergoregion and decaying into two particles with
energies E1(> 0) and E2(< 0) respectively inside the
ergoregion then following two things are observed

1. The particle with E2(< 0) can never come out of ergoregion as
it has negative energy and it would ultimately be sucked by
Black Hole

2. The decaying process can be arranged such that the particle
with energy E1(> 0) can come out of ergoregion and thus we
have following energy balance

Black Hole Outside Particle
Initial Energy Eo E
Final Energy Eo + E2 < Eo E1 > E
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Penrose Process

• This is how we can extract energy from a Kerr Blackhole

• As the particle has energy E2 < 0 , it also has an angular
momentum L2 < 0 , so in the process both energy and
angular momentum of blackhole keeps on decreasing and the
ergoregion also starts getting contracted

• The process goes on until the angular momentum of
blackholes becomes 0 and the blackhole becomes a
Schwarzschild blackhole so that the ergoregion finally
disapperars
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Surface Gravity(κ)
• In Newtonian gravity, the surface gravity of a gravitating body
is just the acceleration experienced at its surface by a test
particle. For the Earth, the surface gravity is 9.8 m/s2 .

• Similarly for an event horizon, surface gravity can be defined
as acceleration of a static observer near the horizon (as
measured by static observer at infinity).

• For a test particle at radius ro in Schwarzschild spacetime ,
magnitude of four acceleration is given by√

gµνaµaν =
2GM

2r2o

√
1− 2GM

ro

κ = lim
ro→2GM

(√
1− 2GM

ro

) 2GM

2r2o

√
1− 2GM

ro

 =
1

4GM
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Surface Gravity(κ)

• Similarly we can find surface gravity of a kerr blackhole

κ =
r+ −m

2mr+
=

√
m2 − a2

2m(m +
√
m2 − a2)

(m = GM)

(M → Mass of Black Hole)
(r+ → Radius of outer event horizon) .
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Area of event horizon

• For a kerr black hole, at outer event horizon surface line
element ds is given by

γijdx
idx j = ds2 = (r2++a2 cos2 θ)dθ2+

[
(r2+ + a2)2 sin2 θ

r2+ + a2 cos2 θ

]
dϕ2

• This induced metric can be integrated at outer event horizon
surface to obtain the area of event horizon

A =

∫
√
γijdθdϕ =

∫
(r2+ + a2) sin θdθdϕ

A = 4π(r2+ + a2)
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Setting up the Analogy

Ideal Gas Kerr Black Hole

T ⇐⇒ κ/2π
P ⇐⇒ −ΩH

V ⇐⇒ GJ
U ⇐⇒ GM
S ⇐⇒ A/4
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Analogy with Laws of Thermodynamics

Law Ideal Gas Kerr Black Hole

0th Law For a system in equilibrium the
temperature is a constant

The surface gravity is a con-
stant (on the horizon)

1st Law dU = TdS -PdV GdM = κ/8πdA+ΩHdJ

2nd Law δS ≥ 0 δA ≥ 0

δA ≥ 0 is the famous Area Theorem given by Stephen Hawking
in the year 1971
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